Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):171–185. doi: 10.1534/genetics.167.1.171

DNA variability and divergence at the notch locus in Drosophila melanogaster and D. simulans: a case of accelerated synonymous site divergence.

Vanessa Bauer DuMont 1, Justin C Fay 1, Peter P Calabrese 1, Charles F Aquadro 1
PMCID: PMC1470868  PMID: 15166145

Abstract

DNA diversity in two segments of the Notch locus was surveyed in four populations of Drosophila melanogaster and two of D. simulans. In both species we observed evidence of non-steady-state evolution. In D. simulans we observed a significant excess of intermediate frequency variants in a non-African population. In D. melanogaster we observed a disparity between levels of sequence polymorphism and divergence between one of the Notch regions sequenced and other neutral X chromosome loci. The striking feature of the data is the high level of synonymous site divergence at Notch, which is the highest reported to date. To more thoroughly investigate the pattern of synonymous site evolution between these species, we developed a method for calibrating preferred, unpreferred, and equal synonymous substitutions by the effective (potential) number of such changes. In D. simulans, we find that preferred changes per "site" are evolving significantly faster than unpreferred changes at Notch. In contrast we observe a significantly faster per site substitution rate of unpreferred changes in D. melanogaster at this locus. These results suggest that positive selection, and not simply relaxation of constraint on codon bias, has contributed to the higher levels of unpreferred divergence along the D. melanogaster lineage at Notch.

Full Text

The Full Text of this article is available as a PDF (169.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Gene expression and molecular evolution. Curr Opin Genet Dev. 2001 Dec;11(6):660–666. doi: 10.1016/s0959-437x(00)00250-1. [DOI] [PubMed] [Google Scholar]
  2. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. doi: 10.1093/genetics/139.2.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akashi H., Kliman R. M., Eyre-Walker A. Mutation pressure, natural selection, and the evolution of base composition in Drosophila. Genetica. 1998;102-103(1-6):49–60. [PubMed] [Google Scholar]
  4. Akashi H. Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics. 1996 Nov;144(3):1297–1307. doi: 10.1093/genetics/144.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akashi H., Schaeffer S. W. Natural selection and the frequency distributions of "silent" DNA polymorphism in Drosophila. Genetics. 1997 May;146(1):295–307. doi: 10.1093/genetics/146.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994 Mar;136(3):927–935. doi: 10.1093/genetics/136.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science. 1999 Apr 30;284(5415):770–776. doi: 10.1126/science.284.5415.770. [DOI] [PubMed] [Google Scholar]
  8. Bauer V. L., Aquadro C. F. Rates of DNA sequence evolution are not sex-biased in Drosophila melanogaster and D. simulans. Mol Biol Evol. 1997 Dec;14(12):1252–1257. doi: 10.1093/oxfordjournals.molbev.a025734. [DOI] [PubMed] [Google Scholar]
  9. Beatus P., Lendahl U. Notch and neurogenesis. J Neurosci Res. 1998 Oct 15;54(2):125–136. doi: 10.1002/(SICI)1097-4547(19981015)54:2<125::AID-JNR1>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  10. Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
  11. Begun D. J., Aquadro C. F. Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of drosophila: selection and geographic differentiation. Genetics. 1994 Jan;136(1):155–171. doi: 10.1093/genetics/136.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Begun D. J., Aquadro C. F. Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics. 1991 Dec;129(4):1147–1158. doi: 10.1093/genetics/129.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Begun D. J. The frequency distribution of nucleotide variation in Drosophila simulans. Mol Biol Evol. 2001 Jul;18(7):1343–1352. doi: 10.1093/oxfordjournals.molbev.a003918. [DOI] [PubMed] [Google Scholar]
  14. Begun D. J., Whitley P. Reduced X-linked nucleotide polymorphism in Drosophila simulans. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5960–5965. doi: 10.1073/pnas.97.11.5960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Birky C. W., Jr, Walsh J. B. Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6414–6418. doi: 10.1073/pnas.85.17.6414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bustamante Carlos D., Nielsen Rasmus, Sawyer Stanley A., Olsen Kenneth M., Purugganan Michael D., Hartl Daniel L. The cost of inbreeding in Arabidopsis. Nature. 2002 Apr 4;416(6880):531–534. doi: 10.1038/416531a. [DOI] [PubMed] [Google Scholar]
  17. Bustamante Carlos D., Nielsen Rasmus, Sawyer Stanley A., Olsen Kenneth M., Purugganan Michael D., Hartl Daniel L. The cost of inbreeding in Arabidopsis. Nature. 2002 Apr 4;416(6880):531–534. doi: 10.1038/416531a. [DOI] [PubMed] [Google Scholar]
  18. Cortazzo Patricia, Cerveñansky Carlos, Marín Mónica, Reiss Claude, Ehrlich Ricardo, Deana Atilio. Silent mutations affect in vivo protein folding in Escherichia coli. Biochem Biophys Res Commun. 2002 Apr 26;293(1):537–541. doi: 10.1016/S0006-291X(02)00226-7. [DOI] [PubMed] [Google Scholar]
  19. Duan Jubao, Wainwright Mark S., Comeron Josep M., Saitou Naruya, Sanders Alan R., Gelernter Joel, Gejman Pablo V. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet. 2003 Feb 1;12(3):205–216. doi: 10.1093/hmg/ddg055. [DOI] [PubMed] [Google Scholar]
  20. Eanes W. F., Kirchner M., Yoon J., Biermann C. H., Wang I. N., McCartney M. A., Verrelli B. C. Historical selection, amino acid polymorphism and lineage-specific divergence at the G6pd locus in Drosophila melanogaster and D. simulans. Genetics. 1996 Nov;144(3):1027–1041. doi: 10.1093/genetics/144.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fay Justin C., Wyckoff Gerald J., Wu Chung-I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature. 2002 Feb 28;415(6875):1024–1026. doi: 10.1038/4151024a. [DOI] [PubMed] [Google Scholar]
  23. Fleming R. J. Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol. 1998 Dec;9(6):599–607. doi: 10.1006/scdb.1998.0260. [DOI] [PubMed] [Google Scholar]
  24. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fu Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997 Oct;147(2):915–925. doi: 10.1093/genetics/147.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hey Jody, Kliman Richard M. Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics. 2002 Feb;160(2):595–608. doi: 10.1093/genetics/160.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kern Andrew D., Jones Corbin D., Begun David J. Genomic effects of nucleotide substitutions in Drosophila simulans. Genetics. 2002 Dec;162(4):1753–1761. doi: 10.1093/genetics/162.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  29. Kliman R. M., Eyre-Walker A. Patterns of base composition within the genes of Drosophila melanogaster. J Mol Evol. 1998 May;46(5):534–541. doi: 10.1007/pl00006334. [DOI] [PubMed] [Google Scholar]
  30. Kliman R. M. Recent selection on synonymous codon usage in Drosophila. J Mol Evol. 1999 Sep;49(3):343–351. doi: 10.1007/pl00006557. [DOI] [PubMed] [Google Scholar]
  31. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  32. Labate J. A., Biermann C. H., Eanes W. F. Nucleotide variation at the runt locus in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 1999 Jun;16(6):724–731. doi: 10.1093/oxfordjournals.molbev.a026157. [DOI] [PubMed] [Google Scholar]
  33. McVean G. A., Vieira J. Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila. Genetics. 2001 Jan;157(1):245–257. doi: 10.1093/genetics/157.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  35. Mount S. M., Burks C., Hertz G., Stormo G. D., White O., Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. doi: 10.1093/nar/20.16.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Munte A., Aguade M., Segarra C. Changes in the recombinational environment affect divergence in the yellow gene of Drosophila. Mol Biol Evol. 2001 Jun;18(6):1045–1056. doi: 10.1093/oxfordjournals.molbev.a003876. [DOI] [PubMed] [Google Scholar]
  37. Munté A., Aguadé M., Segarra C. Divergence of the yellow gene between Drosophila melanogaster and D. subobscura: recombination rate, codon bias and synonymous substitutions. Genetics. 1997 Sep;147(1):165–175. doi: 10.1093/genetics/147.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Oresic Matej, Dehn Michael, Korenblum Daniel, Shalloway David. Tracing specific synonymous codon-secondary structure correlations through evolution. J Mol Evol. 2003 Apr;56(4):473–484. doi: 10.1007/s00239-002-2418-x. [DOI] [PubMed] [Google Scholar]
  39. Petrov D. A., Hartl D. L. Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1475–1479. doi: 10.1073/pnas.96.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rebay I., Fleming R. J., Fehon R. G., Cherbas L., Cherbas P., Artavanis-Tsakonas S. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell. 1991 Nov 15;67(4):687–699. doi: 10.1016/0092-8674(91)90064-6. [DOI] [PubMed] [Google Scholar]
  41. Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
  42. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  43. Schaeffer S. W., Aquadro C. F., Langley C. H. Restriction-map variation in the Notch region of Drosophila melanogaster. Mol Biol Evol. 1988 Jan;5(1):30–40. doi: 10.1093/oxfordjournals.molbev.a040475. [DOI] [PubMed] [Google Scholar]
  44. Shields D. C., Sharp P. M., Higgins D. G., Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. doi: 10.1093/oxfordjournals.molbev.a040525. [DOI] [PubMed] [Google Scholar]
  45. Smith N. G., Eyre-Walker A. Why are translationally sub-optimal synonymous codons used in Escherichia coli? J Mol Evol. 2001 Sep;53(3):225–236. doi: 10.1007/s002390010212. [DOI] [PubMed] [Google Scholar]
  46. Smith Nick G. C., Eyre-Walker Adam. Adaptive protein evolution in Drosophila. Nature. 2002 Feb 28;415(6875):1022–1024. doi: 10.1038/4151022a. [DOI] [PubMed] [Google Scholar]
  47. Swanson Willie J., Nielsen Rasmus, Yang Qiaofeng. Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol. 2003 Jan;20(1):18–20. doi: 10.1093/oxfordjournals.molbev.a004233. [DOI] [PubMed] [Google Scholar]
  48. Tajima F. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics. 1993 Oct;135(2):599–607. doi: 10.1093/genetics/135.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Takano-Shimizu T. Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. Mol Biol Evol. 2001 Apr;18(4):606–619. doi: 10.1093/oxfordjournals.molbev.a003841. [DOI] [PubMed] [Google Scholar]
  51. Takano-Shimizu T. Local recombination and mutation effects on molecular evolution in Drosophila. Genetics. 1999 Nov;153(3):1285–1296. doi: 10.1093/genetics/153.3.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wall J. D. A comparison of estimators of the population recombination rate. Mol Biol Evol. 2000 Jan;17(1):156–163. doi: 10.1093/oxfordjournals.molbev.a026228. [DOI] [PubMed] [Google Scholar]
  53. Wall Jeffrey D., Andolfatto Peter, Przeworski Molly. Testing models of selection and demography in Drosophila simulans. Genetics. 2002 Sep;162(1):203–216. doi: 10.1093/genetics/162.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yang Z., Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000 Jan;17(1):32–43. doi: 10.1093/oxfordjournals.molbev.a026236. [DOI] [PubMed] [Google Scholar]
  55. Yang Z., Nielsen R. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol. 1998 Apr;46(4):409–418. doi: 10.1007/pl00006320. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES