Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):941–947. doi: 10.1534/genetics.103.016303

Sequence polymorphism in polyploid wheat and their d-genome diploid ancestor.

Katherine S Caldwell 1, Jan Dvorak 1, Evans S Lagudah 1, Eduard Akhunov 1, Ming-Cheng Luo 1, Petra Wolters 1, Wayne Powell 1
PMCID: PMC1470897  PMID: 15238542

Abstract

Sequencing was used to investigate the origin of the D genome of the allopolyploid species Triticum aestivum and Aegilops cylindrica. A 247-bp region of the wheat D-genome Xwye838 locus, encoding ADP-glucopyrophosphorylase, and a 326-bp region of the wheat D-genome Gss locus, encoding granule-bound starch synthase, were sequenced in a total 564 lines of hexaploid wheat (T. aestivum, genome AABBDD) involving all its subspecies and 203 lines of Aegilops tauschii, the diploid source of the wheat D genome. In Ae. tauschii, two SNP variants were detected at the Xwye838 locus and 11 haplotypes at the Gss locus. Two haplotypes with contrasting frequencies were found at each locus in wheat. Both wheat Xwye838 variants, but only one of the Gss haplotypes seen in wheat, were found among the Ae. tauschii lines. The other wheat Gss haplotype was not found in either Ae. tauschii or 70 lines of tetraploid Ae. cylindrica (genomes CCDD), which is known to hybridize with wheat. It is concluded that both T. aestivum and Ae. cylindrica originated recurrently, with at least two genetically distinct progenitors contributing to the formation of the D genome in both species.

Full Text

The Full Text of this article is available as a PDF (107.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainsworth C., Hosein F., Tarvis M., Weir F., Burrell M., Devos K. M., Gale M. D. Adenosine diphosphate glucose pyrophosphorylase genes in wheat: differential expression and gene mapping. Planta. 1995;197(1):1–10. doi: 10.1007/BF00239933. [DOI] [PubMed] [Google Scholar]
  2. Blake N. K., Lehfeldt B. R., Lavin M., Talbert L. E. Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat. Genome. 1999 Apr;42(2):351–360. [PubMed] [Google Scholar]
  3. Buckler Edward S., 4th, Thornsberry Jeffry M. Plant molecular diversity and applications to genomics. Curr Opin Plant Biol. 2002 Apr;5(2):107–111. doi: 10.1016/s1369-5266(02)00238-8. [DOI] [PubMed] [Google Scholar]
  4. Cummings M. P., Clegg M. T. Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spontaneum): an evaluation of the background selection hypothesis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5637–5642. doi: 10.1073/pnas.95.10.5637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eyre-Walker A., Gaut R. L., Hilton H., Feldman D. L., Gaut B. S. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4441–4446. doi: 10.1073/pnas.95.8.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Filatov D. A., Charlesworth D. DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. Genetics. 1999 Nov;153(3):1423–1434. doi: 10.1093/genetics/153.3.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaut B. S., Clegg M. T. Nucleotide polymorphism in the Adh1 locus of pearl millet (Pennisetum glaucum) (Poaceae). Genetics. 1993 Dec;135(4):1091–1097. doi: 10.1093/genetics/135.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hilton H., Gaut B. S. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics. 1998 Oct;150(2):863–872. doi: 10.1093/genetics/150.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin J. Z., Brown A. H., Clegg M. T. Heterogeneous geographic patterns of nucleotide sequence diversity between two alcohol dehydrogenase genes in wild barley (Hordeum vulgare subspecies spontaneum). Proc Natl Acad Sci U S A. 2001 Jan 9;98(2):531–536. doi: 10.1073/pnas.011537898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Osborn Thomas C., Pires J. Chris, Birchler James A., Auger Donald L., Chen Z. Jeffery, Lee Hyeon-Se, Comai Luca, Madlung Andreas, Doerge R. W., Colot Vincent. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 2003 Mar;19(3):141–147. doi: 10.1016/s0168-9525(03)00015-5. [DOI] [PubMed] [Google Scholar]
  11. Otto S. P., Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. [DOI] [PubMed] [Google Scholar]
  12. Pébusque M. J., Coulier F., Birnbaum D., Pontarotti P. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol. 1998 Sep;15(9):1145–1159. doi: 10.1093/oxfordjournals.molbev.a026022. [DOI] [PubMed] [Google Scholar]
  13. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  14. Salamini Francesco, Ozkan Hakan, Brandolini Andrea, Schäfer-Pregl Ralf, Martin William. Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet. 2002 Jun;3(6):429–441. doi: 10.1038/nrg817. [DOI] [PubMed] [Google Scholar]
  15. Small R. L., Ryburn J. A., Wendel J. F. Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol. 1999 Apr;16(4):491–501. doi: 10.1093/oxfordjournals.molbev.a026131. [DOI] [PubMed] [Google Scholar]
  16. Soltis DE, Soltis PS. Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol. 1999 Sep;14(9):348–352. doi: 10.1016/s0169-5347(99)01638-9. [DOI] [PubMed] [Google Scholar]
  17. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tanksley S. D., McCouch S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997 Aug 22;277(5329):1063–1066. doi: 10.1126/science.277.5329.1063. [DOI] [PubMed] [Google Scholar]
  20. Tenaillon M. I., Sawkins M. C., Long A. D., Gaut R. L., Doebley J. F., Gaut B. S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001 Jul 24;98(16):9161–9166. doi: 10.1073/pnas.151244298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tiffin P., Gaut B. S. Sequence diversity in the tetraploid Zea perennis and the closely related diploid Z. diploperennis: insights from four nuclear loci. Genetics. 2001 May;158(1):401–412. doi: 10.1093/genetics/158.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang G. Z., Miyashita N. T., Tsunewaki K. Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14570–14577. doi: 10.1073/pnas.94.26.14570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wendel J. F. Genome evolution in polyploids. Plant Mol Biol. 2000 Jan;42(1):225–249. [PubMed] [Google Scholar]
  24. White S. E., Doebley J. F. The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics. 1999 Nov;153(3):1455–1462. doi: 10.1093/genetics/153.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolfe K. H., Shields D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997 Jun 12;387(6634):708–713. doi: 10.1038/42711. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES