Skip to main content
Genetics logoLink to Genetics
. 2004 Jul;167(3):1331–1340. doi: 10.1534/genetics.104.026856

Comparative evolutionary histories of chitinase genes in the Genus zea and Family poaceae.

Peter Tiffin 1
PMCID: PMC1470951  PMID: 15280246

Abstract

Patterns of DNA sequence diversity vary widely among genes encoding proteins that protect plants against pathogens and herbivores. Comparative studies may help determine whether these differences are due to the strength of selection acting on different types of defense, in different evolutionary lineages, or both. I analyzed sequence diversity at three chitinases, a well-studied component of defense, in two species of Zea and several Poaceae taxa. Although the Zea species are closely related and these genes code for proteins with similar biochemical function, patterns of diversity vary widely within and among species. Intraspecific diversity at chiB, chiI, and Z. mays ssp. parviglumis chiA are consistent with a neutral-equilibrium model whereas chiA had no segregating sites within Z. diploperennis--consistent with a recent and strong selective sweep. Codons identified as having diverged among Poaceae taxa in response to positive selection were significantly overrepresented among targets of selection in Arabis, suggesting common responses to selection in distantly related plant taxa. Divergence of the recent duplicates chiA and chiB is consistent with positive selection but relaxed constraint cannot be rejected. Weak evidence for adaptive divergence of these duplicated downstream components of defense contrasts with strong evidence for adaptive divergence of genes involved in pathogen recognition.

Full Text

The Full Text of this article is available as a PDF (201.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. doi: 10.1093/genetics/139.2.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergelson J., Kreitman M., Stahl E. A., Tian D. Evolutionary dynamics of plant R-genes. Science. 2001 Jun 22;292(5525):2281–2285. doi: 10.1126/science.1061337. [DOI] [PubMed] [Google Scholar]
  3. Bishop J. G., Dean A. M., Mitchell-Olds T. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5322–5327. doi: 10.1073/pnas.97.10.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brameld K. A., Goddard W. A., 3rd The role of enzyme distortion in the single displacement mechanism of family 19 chitinases. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4276–4281. doi: 10.1073/pnas.95.8.4276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brogue K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvais C. J., Broglie R. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science. 1991 Nov 22;254(5035):1194–1197. doi: 10.1126/science.254.5035.1194. [DOI] [PubMed] [Google Scholar]
  6. Caicedo A. L., Schaal B. A., Kunkel B. N. Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):302–306. doi: 10.1073/pnas.96.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellis J., Dodds P., Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol. 2000 Aug;3(4):278–284. doi: 10.1016/s1369-5266(00)00080-7. [DOI] [PubMed] [Google Scholar]
  8. Eyre-Walker Adam. Changing effective population size and the McDonald-Kreitman test. Genetics. 2002 Dec;162(4):2017–2024. doi: 10.1093/genetics/162.4.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hart P. J., Pfluger H. D., Monzingo A. F., Hollis T., Robertus J. D. The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 A resolution. J Mol Biol. 1995 Apr 28;248(2):402–413. [PubMed] [Google Scholar]
  10. Hill R. E., Hastie N. D. Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature. 1987 Mar 5;326(6108):96–99. doi: 10.1038/326096a0. [DOI] [PubMed] [Google Scholar]
  11. Hilton H., Gaut B. S. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics. 1998 Oct;150(2):863–872. doi: 10.1093/genetics/150.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hughes A. L. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci. 1994 May 23;256(1346):119–124. doi: 10.1098/rspb.1994.0058. [DOI] [PubMed] [Google Scholar]
  14. Hughes A. L., Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet. 1998;32:415–435. doi: 10.1146/annurev.genet.32.1.415. [DOI] [PubMed] [Google Scholar]
  15. Hulbert S. H., Webb C. A., Smith S. M., Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol. 2001;39:285–312. doi: 10.1146/annurev.phyto.39.1.285. [DOI] [PubMed] [Google Scholar]
  16. Huynh Q. K., Hironaka C. M., Levine E. B., Smith C. E., Borgmeyer J. R., Shah D. M. Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. J Biol Chem. 1992 Apr 5;267(10):6635–6640. [PubMed] [Google Scholar]
  17. Kawabe A., Miyashita N. T. DNA variation in the basic chitinase locus (ChiB) region of the wild plant Arabidopsis thaliana. Genetics. 1999 Nov;153(3):1445–1453. doi: 10.1093/genetics/153.3.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kumar S., Tamura K., Jakobsen I. B., Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001 Dec;17(12):1244–1245. doi: 10.1093/bioinformatics/17.12.1244. [DOI] [PubMed] [Google Scholar]
  19. Mauricio Rodney, Stahl Eli A., Korves Tonia, Tian Dacheng, Kreitman Martin, Bergelson Joy. Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics. 2003 Feb;163(2):735–746. doi: 10.1093/genetics/163.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  21. Meyers B. C., Shen K. A., Rohani P., Gaut B. S., Michelmore R. W. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell. 1998 Nov;10(11):1833–1846. doi: 10.1105/tpc.10.11.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mondragón-Palomino Mariana, Meyers Blake C., Michelmore Richard W., Gaut Brandon S. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 2002 Sep;12(9):1305–1315. doi: 10.1101/gr.159402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ohnuma Takayuki, Yagi Mikako, Yamagami Takeshi, Taira Toki, Aso Yoichi, Ishiguro Masatsune. Molecular cloning, functional expression, and mutagenesis of cDNA encoding rye (Secale cereale) seed chitinase-c. Biosci Biotechnol Biochem. 2002 Feb;66(2):277–284. doi: 10.1271/bbb.66.277. [DOI] [PubMed] [Google Scholar]
  24. Rausher M. D. Co-evolution and plant resistance to natural enemies. Nature. 2001 Jun 14;411(6839):857–864. doi: 10.1038/35081193. [DOI] [PubMed] [Google Scholar]
  25. Slatkin M. The average number of sites separating DNA sequences drawn from a subdivided population. Theor Popul Biol. 1987 Aug;32(1):42–49. doi: 10.1016/0040-5809(87)90038-4. [DOI] [PubMed] [Google Scholar]
  26. Stahl E. A., Dwyer G., Mauricio R., Kreitman M., Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature. 1999 Aug 12;400(6745):667–671. doi: 10.1038/23260. [DOI] [PubMed] [Google Scholar]
  27. Taira Toki, Ohnuma Takayuki, Yamagami Takeshi, Aso Yoichi, Ishiguro Masatsune, Ishihara Masanobu. Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Biosci Biotechnol Biochem. 2002 May;66(5):970–977. doi: 10.1271/bbb.66.970. [DOI] [PubMed] [Google Scholar]
  28. Tajima F. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics. 1993 Oct;135(2):599–607. doi: 10.1093/genetics/135.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tenaillon M. I., Sawkins M. C., Long A. D., Gaut R. L., Doebley J. F., Gaut B. S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001 Jul 24;98(16):9161–9166. doi: 10.1073/pnas.151244298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tian Dacheng, Araki Hitoshi, Stahl Eli, Bergelson Joy, Kreitman Martin. Signature of balancing selection in Arabidopsis. Proc Natl Acad Sci U S A. 2002 Aug 9;99(17):11525–11530. doi: 10.1073/pnas.172203599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tiffin P., Gaut B. S. Molecular evolution of the wound-induced serine protease inhibitor wip1 in Zea and related genera. Mol Biol Evol. 2001 Nov;18(11):2092–2101. doi: 10.1093/oxfordjournals.molbev.a003750. [DOI] [PubMed] [Google Scholar]
  33. Tiffin P., Gaut B. S. Sequence diversity in the tetraploid Zea perennis and the closely related diploid Z. diploperennis: insights from four nuclear loci. Genetics. 2001 May;158(1):401–412. doi: 10.1093/genetics/158.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Whitt Sherry R., Wilson Larissa M., Tenaillon Maud I., Gaut Brandon S., Buckler Edward S., 4th Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci U S A. 2002 Sep 20;99(20):12959–12962. doi: 10.1073/pnas.202476999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wright Stephen I., Lauga Beatrice, Charlesworth Deborah. Subdivision and haplotype structure in natural populations of Arabidopsis lyrata. Mol Ecol. 2003 May;12(5):1247–1263. doi: 10.1046/j.1365-294x.2003.01743.x. [DOI] [PubMed] [Google Scholar]
  36. Wu S., Kriz A. L., Widholm J. M. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize. Plant Physiol. 1994 Aug;105(4):1097–1105. doi: 10.1104/pp.105.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yang Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol. 1998 May;15(5):568–573. doi: 10.1093/oxfordjournals.molbev.a025957. [DOI] [PubMed] [Google Scholar]
  38. Yang Z., Nielsen R., Goldman N., Pedersen A. M. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000 May;155(1):431–449. doi: 10.1093/genetics/155.1.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhang Liqing, Peek Andrew S., Dunams Detiger, Gaut Brandon S. Population genetics of duplicated disease-defense genes, hm1 and hm2, in maize (Zea mays ssp. mays L.) and its wild ancestor (Zea mays ssp. parviglumis). Genetics. 2002 Oct;162(2):851–860. doi: 10.1093/genetics/162.2.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. de Meaux J., Mitchell-Olds T. Evolution of plant resistance at the molecular level: ecological context of species interactions. Heredity (Edinb) 2003 Oct;91(4):345–352. doi: 10.1038/sj.hdy.6800342. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES