Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1929–1937. doi: 10.1534/genetics.103.026229

Transposition of reversed Ac element ends generates chromosome rearrangements in maize.

Jianbo Zhang 1, Thomas Peterson 1
PMCID: PMC1471009  PMID: 15342530

Abstract

In classical "cut-and-paste" transposition, transposons are excised from donor sites and inserted at new locations. We have identified an alternative pathway in which transposition involves the 5' end of an intact Ac element and the 3' end of a nearby terminally deleted fAc (fractured Ac). The Ac and fAc elements are inserted at the maize p1 locus on chromosome 1s in the same orientation; the adjacent ends of the separate elements are thus in reversed orientation with respect to each other and are separated by a distance of approximately 13 kb. Transposition involving the two ends in reversed orientation generates inversions, deletions, and a novel type of local rearrangement. The rearrangement breakpoints are bounded by the characteristic footprint or target site duplications typical of Ac transposition reactions. These results demonstrate a new intramolecular transposition mechanism by which transposons can greatly impact genome evolution.

Full Text

The Full Text of this article is available as a PDF (243.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Athma P., Peterson T. Ac induces homologous recombination at the maize P locus. Genetics. 1991 May;128(1):163–173. doi: 10.1093/genetics/128.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brutnell Thomas P., Conrad Liza J. Transposon tagging using Activator (Ac) in maize. Methods Mol Biol. 2003;236:157–176. doi: 10.1385/1-59259-413-1:157. [DOI] [PubMed] [Google Scholar]
  3. Coghlan Avril, Wolfe Kenneth H. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res. 2002 Jun;12(6):857–867. doi: 10.1101/gr.172702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dooner H. K., Belachew A. Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics. 1991 Nov;129(3):855–862. doi: 10.1093/genetics/129.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunham Maitreya J., Badrane Hassan, Ferea Tracy, Adams Julian, Brown Patrick O., Rosenzweig Frank, Botstein David. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2002 Nov 21;99(25):16144–16149. doi: 10.1073/pnas.242624799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Döring H. P., Tillmann E., Starlinger P. DNA sequence of the maize transposable element Dissociation. Nature. 1984 Jan 12;307(5947):127–130. doi: 10.1038/307127a0. [DOI] [PubMed] [Google Scholar]
  7. English J. J., Harrison K., Jones JDG. Aberrant Transpositions of Maize Double Ds-Like Elements Usually Involve Ds Ends on Sister Chromatids. Plant Cell. 1995 Aug;7(8):1235–1247. doi: 10.1105/tpc.7.8.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. English J., Harrison K., Jones J. D. A genetic analysis of DNA sequence requirements for Dissociation state I activity in tobacco. Plant Cell. 1993 May;5(5):501–514. doi: 10.1105/tpc.5.5.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evgen'ev M. B., Zelentsova H., Poluectova H., Lyozin G. T., Veleikodvorskaja V., Pyatkov K. I., Zhivotovsky L. A., Kidwell M. G. Mobile elements and chromosomal evolution in the virilis group of Drosophila. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11337–11342. doi: 10.1073/pnas.210386297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frame Bronwyn R., Shou Huixia, Chikwamba Rachel K., Zhang Zhanyuan, Xiang Chengbin, Fonger Tina M., Pegg Sue Ellen K., Li Baochun, Nettleton Dan S., Pei Deqing. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 2002 May;129(1):13–22. doi: 10.1104/pp.000653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gorbunova V., Levy A. A. Analysis of extrachromosomal Ac/Ds transposable elements. Genetics. 2000 May;155(1):349–359. doi: 10.1093/genetics/155.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gorbunova V., Levy A. A. Circularized Ac/Ds transposons: formation, structure and fate. Genetics. 1997 Apr;145(4):1161–1169. doi: 10.1093/genetics/145.4.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gray Y. H. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet. 2000 Oct;16(10):461–468. doi: 10.1016/s0168-9525(00)02104-1. [DOI] [PubMed] [Google Scholar]
  14. Gray Y. H., Tanaka M. M., Sved J. A. P-element-induced recombination in Drosophila melanogaster: hybrid element insertion. Genetics. 1996 Dec;144(4):1601–1610. doi: 10.1093/genetics/144.4.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grotewold E., Athma P., Peterson T. Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4587–4591. doi: 10.1073/pnas.88.11.4587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grotewold E., Drummond B. J., Bowen B., Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell. 1994 Feb 11;76(3):543–553. doi: 10.1016/0092-8674(94)90117-1. [DOI] [PubMed] [Google Scholar]
  17. Hua-Van A., Langin T., Daboussi M-J. Aberrant transposition of a Tc1-mariner element, impala, in the fungus Fusarium oxysporum. Mol Genet Genomics. 2002 Feb 9;267(1):79–87. doi: 10.1007/s00438-002-0638-9. [DOI] [PubMed] [Google Scholar]
  18. Lewis H. Speciation in flowering plants. Science. 1966 Apr 8;152(3719):167–172. doi: 10.1126/science.152.3719.167. [DOI] [PubMed] [Google Scholar]
  19. McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47. doi: 10.1101/sqb.1951.016.01.004. [DOI] [PubMed] [Google Scholar]
  20. McElroy D., Louwerse J. D., McElroy S. M., Lemaux P. G. Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. Plant J. 1997 Jan;11(1):157–165. doi: 10.1046/j.1365-313x.1997.11010157.x. [DOI] [PubMed] [Google Scholar]
  21. Page Damian R., Köhler Claudia, Da Costa-Nunes José A., Baroux Célia, Moore James M., Grossniklaus Ueli. Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis. Proc Natl Acad Sci U S A. 2004 Feb 23;101(9):2969–2974. doi: 10.1073/pnas.0400089101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peterson T. Intragenic transposition of Ac generates a new allele of the maize P gene. Genetics. 1990 Oct;126(2):469–476. doi: 10.1093/genetics/126.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Preston C. R., Sved J. A., Engels W. R. Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics. 1996 Dec;144(4):1623–1638. doi: 10.1093/genetics/144.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ralston E., English J., Dooner H. K. Chromosome-breaking structure in maize involving a fractured Ac element. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9451–9455. doi: 10.1073/pnas.86.23.9451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ros F., Kunze R. Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics. 2001 Apr;157(4):1723–1733. doi: 10.1093/genetics/157.4.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weil C. F., Wessler S. R. Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell. 1993 May;5(5):515–522. doi: 10.1105/tpc.5.5.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wirtz U., Osborne B., Baker B. Ds excision from extrachromosomal geminivirus vector DNA is coupled to vector DNA replication in maize. Plant J. 1997 Jan;11(1):125–135. doi: 10.1046/j.1365-313x.1997.11010125.x. [DOI] [PubMed] [Google Scholar]
  29. Xiao Y-L, Peterson T. Ac transposition is impaired by a small terminal deletion. Mol Genet Genomics. 2001 Oct 20;266(5):720–731. doi: 10.1007/s00438-001-0600-2. [DOI] [PubMed] [Google Scholar]
  30. Xiao Y. L., Li X., Peterson T. Ac insertion site affects the frequency of transposon-induced homologous recombination at the maize p1 locus. Genetics. 2000 Dec;156(4):2007–2017. doi: 10.1093/genetics/156.4.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhang P., Chopra S., Peterson T. A segmental gene duplication generated differentially expressed myb-homologous genes in maize. Plant Cell. 2000 Dec;12(12):2311–2322. doi: 10.1105/tpc.12.12.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zhang Peifen, Wang Yibin, Zhang Jianbo, Maddock Sheila, Snook Maurice, Peterson Thomas. A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. Plant Mol Biol. 2003 May;52(1):1–15. doi: 10.1023/a:1023942819106. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES