Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 15;25(22):4429–4443. doi: 10.1093/nar/25.22.4429

The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes.

S M Freier 1, K H Altmann 1
PMCID: PMC147101  PMID: 9358149

Abstract

In an effort to discover novel oligonucleotide modifications for antisense therapeutics, we have prepared oligodeoxyribonucleotides containing more than 200 different modifications and measured their affinities for complementary RNA. These include modifications to the heterocyclic bases, the deoxy-ribose sugar and the phosphodiester linkage. From these results, we have been able to determine structure-activity relationships that correlate hybridization affinity with changes in oligonucleotide structure. Data for oligonucleotides containing modified pyrimidine nucleotides are presented. In general, modifications that resulted in the most stable duplexes contained a heteroatom at the 2'-position of the sugar. Other sugar modifications usually led to diminished hybrid stability. Most backbone modifications that led to improved hybridization restricted backbone mobility and resulted in an A-type sugar pucker for the residue 5'to the modified internucleotide linkage. Among the heterocycles, C-5-substituted pyrimidines stood out as substantially increasing duplex stability.

Full Text

The Full Text of this article is available as a PDF (660.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albergo D. D., Marky L. A., Breslauer K. J., Turner D. H. Thermodynamics of (dG--dC)3 double-helix formation in water and deuterium oxide. Biochemistry. 1981 Mar 17;20(6):1409–1413. doi: 10.1021/bi00509a001. [DOI] [PubMed] [Google Scholar]
  2. Aurup H., Tuschl T., Benseler F., Ludwig J., Eckstein F. Oligonucleotide duplexes containing 2'-amino-2'-deoxycytidines: thermal stability and chemical reactivity. Nucleic Acids Res. 1994 Jan 11;22(1):20–24. doi: 10.1093/nar/22.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker B. F., Lot S. S., Condon T. P., Cheng-Flournoy S., Lesnik E. A., Sasmor H. M., Bennett C. F. 2'-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem. 1997 May 2;272(18):11994–12000. doi: 10.1074/jbc.272.18.11994. [DOI] [PubMed] [Google Scholar]
  4. Belt J. A., Welch A. D. Transport of uridine and 6-azauridine in human lymphoblastoid cells. Specificity for the uncharged 6-azauridine molecule. Mol Pharmacol. 1983 Jan;23(1):153–158. [PubMed] [Google Scholar]
  5. Bhat Balkrishen, Swayze Eric E., Wheeler Patrick, Dimock Stuart, Perbost Michel, Sanghvi Yogesh S. Synthesis of Novel Nucleic Acid Mimics via the Stereoselective Intermolecular Radical Coupling of 3'-Iodo Nucleosides and Formaldoximes(1). J Org Chem. 1996 Nov 15;61(23):8186–8199. doi: 10.1021/jo961549c. [DOI] [PubMed] [Google Scholar]
  6. Buhr C. A., Wagner R. W., Grant D., Froehler B. C. Oligodeoxynucleotides containing C-7 propyne analogs of 7-deaza-2'-deoxyguanosine and 7-deaza-2'-deoxyadenosine. Nucleic Acids Res. 1996 Aug 1;24(15):2974–2980. doi: 10.1093/nar/24.15.2974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chu Y. G., Tinoco I., Jr Temperature-jump kinetics of the dC-G-T-G-A-A-T-T-C-G-C-G double helix containing a G . T base pair and the dC-G-C-A-G-A-A-T-T-C-G-C-G double helix containing an extra adenine. Biopolymers. 1983 Apr;22(4):1235–1246. doi: 10.1002/bip.360220415. [DOI] [PubMed] [Google Scholar]
  8. Cummins L. L., Owens S. R., Risen L. M., Lesnik E. A., Freier S. M., McGee D., Guinosso C. J., Cook P. D. Characterization of fully 2'-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1995 Jun 11;23(11):2019–2024. doi: 10.1093/nar/23.11.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cummins L., Graff D., Beaton G., Marshall W. S., Caruthers M. H. Biochemical and physicochemical properties of phosphorodithioate DNA. Biochemistry. 1996 Jul 2;35(26):8734–8741. doi: 10.1021/bi960318x. [DOI] [PubMed] [Google Scholar]
  10. Dagle J. M., Andracki M. E., DeVine R. J., Walder J. A. Physical properties of oligonucleotides containing phosphoramidate-modified internucleoside linkages. Nucleic Acids Res. 1991 Apr 25;19(8):1805–1810. doi: 10.1093/nar/19.8.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dewey T. G., Turner D. H. Laser temperature jump study of solvent effects of poly(adenylic acid) stacking. Biochemistry. 1980 Apr 15;19(8):1681–1685. doi: 10.1021/bi00549a025. [DOI] [PubMed] [Google Scholar]
  12. Ding D., Grayaznov S. M., Lloyd D. H., Chandrasekaran S., Yao S., Ratmeyer L., Pan Y., Wilson W. D. An oligodeoxyribonucleotide N3'--> P5' phosphoramidate duplex forms an A-type helix in solution. Nucleic Acids Res. 1996 Jan 15;24(2):354–360. doi: 10.1093/nar/24.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Egholm M., Buchardt O., Christensen L., Behrens C., Freier S. M., Driver D. A., Berg R. H., Kim S. K., Norden B., Nielsen P. E. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature. 1993 Oct 7;365(6446):566–568. doi: 10.1038/365566a0. [DOI] [PubMed] [Google Scholar]
  14. Frank-Kamenetskii M. Oligonucleotide drugs. A change of backbone. Nature. 1991 Dec 19;354(6354):505–505. doi: 10.1038/354505a0. [DOI] [PubMed] [Google Scholar]
  15. Ghosh M. K., Ghosh K., Dahl O., Cohen J. S. Evaluation of some properties of a phosphorodithioate oligodeoxyribonucleotide for antisense application. Nucleic Acids Res. 1993 Dec 11;21(24):5761–5766. doi: 10.1093/nar/21.24.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Griffey R. H., Monia B. P., Cummins L. L., Freier S., Greig M. J., Guinosso C. J., Lesnik E., Manalili S. M., Mohan V., Owens S. 2'-O-aminopropyl ribonucleotides: a zwitterionic modification that enhances the exonuclease resistance and biological activity of antisense oligonucleotides. J Med Chem. 1996 Dec 20;39(26):5100–5109. doi: 10.1021/jm950937o. [DOI] [PubMed] [Google Scholar]
  17. Gryaznov S. M., Lloyd D. H., Chen J. K., Schultz R. G., DeDionisio L. A., Ratmeyer L., Wilson W. D. Oligonucleotide N3'-->P5' phosphoramidates. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5798–5802. doi: 10.1073/pnas.92.13.5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hickey D. R., Turner D. H. Solvent effects on the stability of A7U7p. Biochemistry. 1985 Apr 9;24(8):2086–2094. doi: 10.1021/bi00329a042. [DOI] [PubMed] [Google Scholar]
  19. Hélène C., Montenay-Garestier T., Saison T., Takasugi M., Toulmé J. J., Asseline U., Lancelot G., Maurizot J. C., Toulmé F., Thuong N. T. Oligodeoxynucleotides covalently linked to intercalating agents: a new class of gene regulatory substances. Biochimie. 1985 Jul-Aug;67(7-8):777–783. doi: 10.1016/s0300-9084(85)80167-x. [DOI] [PubMed] [Google Scholar]
  20. Inoue H., Hayase Y., Imura A., Iwai S., Miura K., Ohtsuka E. Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides. Nucleic Acids Res. 1987 Aug 11;15(15):6131–6148. doi: 10.1093/nar/15.15.6131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iribarren A. M., Sproat B. S., Neuner P., Sulston I., Ryder U., Lamond A. I. 2'-O-alkyl oligoribonucleotides as antisense probes. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7747–7751. doi: 10.1073/pnas.87.19.7747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones G. D., Lesnik E. A., Owens S. R., Risen L. M., Walker R. T. Investigation of some properties of oligodeoxynucleotides containing 4'-thio-2'-deoxynucleotides: duplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1996 Nov 1;24(21):4117–4122. doi: 10.1093/nar/24.21.4117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kawasaki A. M., Casper M. D., Freier S. M., Lesnik E. A., Zounes M. C., Cummins L. L., Gonzalez C., Cook P. D. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem. 1993 Apr 2;36(7):831–841. doi: 10.1021/jm00059a007. [DOI] [PubMed] [Google Scholar]
  24. Krakauer H., Sturtevant J. M. Heats of the helix-coil transitions of the poly A-poly U complexes. Biopolymers. 1968 Apr;6(4):491–512. doi: 10.1002/bip.1968.360060406. [DOI] [PubMed] [Google Scholar]
  25. Krugh T. R. Tautomerism of the nucleoside antibiotic formycin, as studied by carbon-13 nuclear magnetic resonance. J Am Chem Soc. 1973 Jul 11;95(14):4761–4762. doi: 10.1021/ja00795a053. [DOI] [PubMed] [Google Scholar]
  26. Lamond A. I., Sproat B. S. Antisense oligonucleotides made of 2'-O-alkylRNA: their properties and applications in RNA biochemistry. FEBS Lett. 1993 Jun 28;325(1-2):123–127. doi: 10.1016/0014-5793(93)81427-2. [DOI] [PubMed] [Google Scholar]
  27. Lesnik E. A., Guinosso C. J., Kawasaki A. M., Sasmor H., Zounes M., Cummins L. L., Ecker D. J., Cook P. D., Freier S. M. Oligodeoxynucleotides containing 2'-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. Biochemistry. 1993 Aug 3;32(30):7832–7838. doi: 10.1021/bi00081a031. [DOI] [PubMed] [Google Scholar]
  28. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  29. Marquez V. E., Siddiqui M. A., Ezzitouni A., Russ P., Wang J., Wagner R. W., Matteucci M. D. Nucleosides with a twist. Can fixed forms of sugar ring pucker influence biological activity in nucleosides and oligonucleotides? J Med Chem. 1996 Sep 13;39(19):3739–3747. doi: 10.1021/jm960306+. [DOI] [PubMed] [Google Scholar]
  30. Miller P. S. Development of antisense and antigene oligonucleotide analogs. Prog Nucleic Acid Res Mol Biol. 1996;52:261–291. doi: 10.1016/s0079-6603(08)60969-1. [DOI] [PubMed] [Google Scholar]
  31. Mitra C., Saran A. Molecular orbital studies on nucleoside analogs. II. Conformation of 6-azapyrimidine nucleosides. Biochim Biophys Acta. 1978 Apr 27;518(2):193–204. doi: 10.1016/0005-2787(78)90177-6. [DOI] [PubMed] [Google Scholar]
  32. Monia B. P., Johnston J. F., Ecker D. J., Zounes M. A., Lima W. F., Freier S. M. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J Biol Chem. 1992 Oct 5;267(28):19954–19962. [PubMed] [Google Scholar]
  33. Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
  34. Monia B. P., Sasmor H., Johnston J. F., Freier S. M., Lesnik E. A., Muller M., Geiger T., Altmann K. H., Moser H., Fabbro D. Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15481–15484. doi: 10.1073/pnas.93.26.15481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Moulds C., Lewis J. G., Froehler B. C., Grant D., Huang T., Milligan J. F., Matteucci M. D., Wagner R. W. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry. 1995 Apr 18;34(15):5044–5053. doi: 10.1021/bi00015a015. [DOI] [PubMed] [Google Scholar]
  36. Nelson J. W., Martin F. H., Tinoco I., Jr DNA and RNA oligomer thermodynamics: the effect of mismatched bases on double-helix stability. Biopolymers. 1981 Dec;20(12):2509–2531. doi: 10.1002/bip.1981.360201204. [DOI] [PubMed] [Google Scholar]
  37. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991 Dec 6;254(5037):1497–1500. doi: 10.1126/science.1962210. [DOI] [PubMed] [Google Scholar]
  38. Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry. 1983 Jan 18;22(2):256–263. doi: 10.1021/bi00271a004. [DOI] [PubMed] [Google Scholar]
  39. Peyrottes S., Vasseur J. J., Imbach J. L., Rayner B. Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. 1996 May 15;24(10):1841–1848. doi: 10.1093/nar/24.10.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  41. Sanghvi Y. S., Hoke G. D., Freier S. M., Zounes M. C., Gonzalez C., Cummins L., Sasmor H., Cook P. D. Antisense oligodeoxynucleotides: synthesis, biophysical and biological evaluation of oligodeoxynucleotides containing modified pyrimidines. Nucleic Acids Res. 1993 Jul 11;21(14):3197–3203. doi: 10.1093/nar/21.14.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schultz R. G., Gryaznov S. M. Oligo-2'-fluoro-2'-deoxynucleotide N3'-->P5' phosphoramidates: synthesis and properties. Nucleic Acids Res. 1996 Aug 1;24(15):2966–2973. doi: 10.1093/nar/24.15.2966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Summerton J., Stein D., Huang S. B., Matthews P., Weller D., Partridge M. Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev. 1997 Apr;7(2):63–70. doi: 10.1089/oli.1.1997.7.63. [DOI] [PubMed] [Google Scholar]
  44. Toulmé J. J., Krisch H. M., Loreau N., Thuong N. T., Hélène C. Specific inhibition of mRNA translation by complementary oligonucleotides covalently linked to intercalating agents. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1227–1231. doi: 10.1073/pnas.83.5.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vesnaver G., Breslauer K. J. The contribution of DNA single-stranded order to the thermodynamics of duplex formation. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3569–3573. doi: 10.1073/pnas.88.9.3569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wagner R. W., Matteucci M. D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993 Jun 4;260(5113):1510–1513. doi: 10.1126/science.7684856. [DOI] [PubMed] [Google Scholar]
  47. Williams A. P., Longfellow C. E., Freier S. M., Kierzek R., Turner D. H. Laser temperature-jump, spectroscopic, and thermodynamic study of salt effects on duplex formation by dGCATGC. Biochemistry. 1989 May 16;28(10):4283–4291. doi: 10.1021/bi00436a025. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES