Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1749–1758. doi: 10.1534/genetics.104.027045

A single-amino-acid change of the gustatory receptor gene, Gr5a, has a major effect on trehalose sensitivity in a natural population of Drosophila melanogaster.

Nobuyuki Inomata 1, Hiroki Goto 1, Masanobu Itoh 1, Kunio Isono 1
PMCID: PMC1471011  PMID: 15342513

Abstract

Variation in trehalose sensitivity and nucleotide sequence polymorphism of the Gr5a gene encoding the gustatory receptor to sugar trehalose were investigated in 152 male lines of Drosophila melanogaster collected from a natural population. Among the observed 59 segregating sites, some pairs of sites showed significant linkage disequilibrium. A single SNP, which results in the Ala218Thr amino acid change, was significantly associated with trehalose sensitivity, as previously suggested. Threonine at amino acid position 218 was found to be the ancestral form in D. melanogaster, suggesting that low trehalose sensitivity was an ancestral form with respect to the receptor function. There was large genetic variation in trehalose sensitivity. It was continuously distributed, indicating that trehalose sensitivity measured by the behavioral assay is a quantitative trait. These results suggest that apart from the Gr5a gene, other genetic factors contribute to variation in trehalose sensitivity. Nucleotide diversity (pi) and nucleotide variation (theta) per site were 0.00874 and 0.00590, respectively. Fu and Li's test and the MK test showed no significant departure from the expectation of selective neutrality in the Gr5a gene. However, we rejected selective neutrality by Tajima's test and Fay and Wu's test with the observed level of recombination. We discuss possible causes of the observed pattern of nucleotide variation in the gustatory receptor Gr5a gene.

Full Text

The Full Text of this article is available as a PDF (177.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Inferring the fitness effects of DNA mutations from polymorphism and divergence data: statistical power to detect directional selection under stationarity and free recombination. Genetics. 1999 Jan;151(1):221–238. doi: 10.1093/genetics/151.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andolfatto Peter, Wall Jeffrey D. Linkage disequilibrium patterns across a recombination gradient in African Drosophila melanogaster. Genetics. 2003 Nov;165(3):1289–1305. doi: 10.1093/genetics/165.3.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chyb Sylwester, Dahanukar Anupama, Wickens Andrew, Carlson John R. Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natl Acad Sci U S A. 2003 Oct 1;100 (Suppl 2):14526–14530. doi: 10.1073/pnas.2135339100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clyne P. J., Warr C. G., Carlson J. R. Candidate taste receptors in Drosophila. Science. 2000 Mar 10;287(5459):1830–1834. doi: 10.1126/science.287.5459.1830. [DOI] [PubMed] [Google Scholar]
  6. Dahanukar A., Foster K., van der Goes van Naters W. M., Carlson J. R. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci. 2001 Dec;4(12):1182–1186. doi: 10.1038/nn765. [DOI] [PubMed] [Google Scholar]
  7. Dunipace L., Meister S., McNealy C., Amrein H. Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr Biol. 2001 Jun 5;11(11):822–835. doi: 10.1016/s0960-9822(01)00258-5. [DOI] [PubMed] [Google Scholar]
  8. Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  11. Hudson Richard R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002 Feb;18(2):337–338. doi: 10.1093/bioinformatics/18.2.337. [DOI] [PubMed] [Google Scholar]
  12. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  14. Robertson Hugh M., Warr Coral G., Carlson John R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2003 Nov 7;100 (Suppl 2):14537–14542. doi: 10.1073/pnas.2335847100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rozas Julio, Sánchez-DelBarrio Juan C., Messeguer Xavier, Rozas Ricardo. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003 Dec 12;19(18):2496–2497. doi: 10.1093/bioinformatics/btg359. [DOI] [PubMed] [Google Scholar]
  16. Simonsen K. L., Churchill G. A., Aquadro C. F. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995 Sep;141(1):413–429. doi: 10.1093/genetics/141.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ueno K., Ohta M., Morita H., Mikuni Y., Nakajima S., Yamamoto K., Isono K. Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol. 2001 Sep 18;11(18):1451–1455. doi: 10.1016/s0960-9822(01)00450-x. [DOI] [PubMed] [Google Scholar]
  20. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES