Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1597–1610. doi: 10.1534/genetics.103.021675

CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae.

Luis Pessoa-Brandão 1, Robert A Sclafani 1
PMCID: PMC1471023  PMID: 15342501

Abstract

CDC7 and DBF4 encode the essential Cdc7-Dbf4 protein kinase required for DNA replication in eukaryotes from yeast to human. Cdc7-Dbf4 is also required for DNA damage-induced mutagenesis, one of several postreplicational DNA damage tolerance mechanisms mediated by the RAD6 epistasis group. Several genes have been determined to function in separate branches within this group, including RAD5, REV3/REV7 (Pol zeta), RAD30 (Pol eta), and POL30 (PCNA). An extensive genetic analysis of the interactions between CDC7 and REV3, RAD30, RAD5, or POL30 in response to DNA damage was done to determine its role in the RAD6 pathway. CDC7, RAD5, POL30, and RAD30 were found to constitute four separate branches of the RAD6 epistasis group in response to UV and MMS exposure. CDC7 is also shown to function separately from REV3 in response to MMS. However, they belong in the same pathway in response to UV. We propose that the Cdc7-Dbf4 kinase associates with components of the translesion synthesis pathway and that this interaction is dependent upon the type of DNA damage. Finally, activation of the DNA damage checkpoint and the resulting cell cycle delay is intact in cdc7Delta mcm5-bob1 cells, suggesting a direct role for CDC7 in DNA repair/damage tolerance.

Full Text

The Full Text of this article is available as a PDF (219.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayyagari R., Impellizzeri K. J., Yoder B. L., Gary S. L., Burgers P. M. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol. 1995 Aug;15(8):4420–4429. doi: 10.1128/mcb.15.8.4420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailly V., Lamb J., Sung P., Prakash S., Prakash L. Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 1994 Apr 1;8(7):811–820. doi: 10.1101/gad.8.7.811. [DOI] [PubMed] [Google Scholar]
  3. Baynton K., Bresson-Roy A., Fuchs R. P. Analysis of damage tolerance pathways in Saccharomyces cerevisiae: a requirement for Rev3 DNA polymerase in translesion synthesis. Mol Cell Biol. 1998 Feb;18(2):960–966. doi: 10.1128/mcb.18.2.960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell Stephen P., Dutta Anindya. DNA replication in eukaryotic cells. Annu Rev Biochem. 2001 Nov 9;71:333–374. doi: 10.1146/annurev.biochem.71.110601.135425. [DOI] [PubMed] [Google Scholar]
  5. Brendel M., Haynes R. H. Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Mol Gen Genet. 1973 Sep 12;125(3):197–216. doi: 10.1007/BF00270743. [DOI] [PubMed] [Google Scholar]
  6. Bresson Anne, Fuchs Robert P. P. Lesion bypass in yeast cells: Pol eta participates in a multi-DNA polymerase process. EMBO J. 2002 Jul 15;21(14):3881–3887. doi: 10.1093/emboj/cdf363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Broomfield S., Chow B. L., Xiao W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5678–5683. doi: 10.1073/pnas.95.10.5678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Broomfield S., Hryciw T., Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res. 2001 Aug 9;486(3):167–184. doi: 10.1016/s0921-8777(01)00091-x. [DOI] [PubMed] [Google Scholar]
  9. Broomfield Stacey, Xiao Wei. Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis. Nucleic Acids Res. 2002 Feb 1;30(3):732–739. doi: 10.1093/nar/30.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Costanzo Vincenzo, Shechter David, Lupardus Patrick J., Cimprich Karlene A., Gottesman Max, Gautier Jean. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell. 2003 Jan;11(1):203–213. doi: 10.1016/s1097-2765(02)00799-2. [DOI] [PubMed] [Google Scholar]
  11. Cox B., Game J. Repair systems in Saccharomyces. Mutat Res. 1974 Aug;26(4):257–264. doi: 10.1016/s0027-5107(74)80023-0. [DOI] [PubMed] [Google Scholar]
  12. Giot L., Chanet R., Simon M., Facca C., Faye G. Involvement of the yeast DNA polymerase delta in DNA repair in vivo. Genetics. 1997 Aug;146(4):1239–1251. doi: 10.1093/genetics/146.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guo D., Wu X., Rajpal D. K., Taylor J. S., Wang Z. Translesion synthesis by yeast DNA polymerase zeta from templates containing lesions of ultraviolet radiation and acetylaminofluorene. Nucleic Acids Res. 2001 Jul 1;29(13):2875–2883. doi: 10.1093/nar/29.13.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haracska L., Kondratick C. M., Unk I., Prakash S., Prakash L. Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell. 2001 Aug;8(2):407–415. doi: 10.1016/s1097-2765(01)00319-7. [DOI] [PubMed] [Google Scholar]
  15. Haracska L., Unk I., Johnson R. E., Johansson E., Burgers P. M., Prakash S., Prakash L. Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev. 2001 Apr 15;15(8):945–954. doi: 10.1101/gad.882301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haracska Lajos, Prakash Satya, Prakash Louise. Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine. Mol Cell Biol. 2003 Feb;23(4):1453–1459. doi: 10.1128/MCB.23.4.1453-1459.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hardy C. F., Dryga O., Seematter S., Pahl P. M., Sclafani R. A. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3151–3155. doi: 10.1073/pnas.94.7.3151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  19. Hofmann R. M., Pickart C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell. 1999 Mar 5;96(5):645–653. doi: 10.1016/s0092-8674(00)80575-9. [DOI] [PubMed] [Google Scholar]
  20. Hollingsworth R. E., Jr, Ostroff R. M., Klein M. B., Niswander L. A., Sclafani R. A. Molecular genetic studies of the Cdc7 protein kinase and induced mutagenesis in yeast. Genetics. 1992 Sep;132(1):53–62. doi: 10.1093/genetics/132.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huang M. E., de Calignon A., Nicolas A., Galibert F. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr Genet. 2000 Nov;38(4):178–187. doi: 10.1007/s002940000149. [DOI] [PubMed] [Google Scholar]
  22. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jackson A. L., Pahl P. M., Harrison K., Rosamond J., Sclafani R. A. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol. 1993 May;13(5):2899–2908. doi: 10.1128/mcb.13.5.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jares P., Donaldson A., Blow J. J. The Cdc7/Dbf4 protein kinase: target of the S phase checkpoint? EMBO Rep. 2000 Oct;1(4):319–322. doi: 10.1093/embo-reports/kvd076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Johnson R. E., Haracska L., Prakash S., Prakash L. Role of DNA polymerase eta in the bypass of a (6-4) TT photoproduct. Mol Cell Biol. 2001 May;21(10):3558–3563. doi: 10.1128/MCB.21.10.3558-3563.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Johnson R. E., Henderson S. T., Petes T. D., Prakash S., Bankmann M., Prakash L. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol Cell Biol. 1992 Sep;12(9):3807–3818. doi: 10.1128/mcb.12.9.3807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Johnson R. E., Prakash S., Prakash L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science. 1999 Feb 12;283(5404):1001–1004. doi: 10.1126/science.283.5404.1001. [DOI] [PubMed] [Google Scholar]
  28. Johnson R. E., Washington M. T., Haracska L., Prakash S., Prakash L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature. 2000 Aug 31;406(6799):1015–1019. doi: 10.1038/35023030. [DOI] [PubMed] [Google Scholar]
  29. Kilbey B. J. cdc7 alleles and the control of induced mutagenesis in yeast. Mutagenesis. 1986 Jan;1(1):29–31. doi: 10.1093/mutage/1.1.29. [DOI] [PubMed] [Google Scholar]
  30. Lemontt J. F. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics. 1971 May;68(1):21–33. doi: 10.1093/genetics/68.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Masutani C., Araki M., Yamada A., Kusumoto R., Nogimori T., Maekawa T., Iwai S., Hanaoka F. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 1999 Jun 15;18(12):3491–3501. doi: 10.1093/emboj/18.12.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Masutani C., Kusumoto R., Yamada A., Dohmae N., Yokoi M., Yuasa M., Araki M., Iwai S., Takio K., Hanaoka F. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 1999 Jun 17;399(6737):700–704. doi: 10.1038/21447. [DOI] [PubMed] [Google Scholar]
  33. Morrison A., Christensen R. B., Alley J., Beck A. K., Bernstine E. G., Lemontt J. F., Lawrence C. W. REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J Bacteriol. 1989 Oct;171(10):5659–5667. doi: 10.1128/jb.171.10.5659-5667.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nelson J. R., Gibbs P. E., Nowicka A. M., Hinkle D. C., Lawrence C. W. Evidence for a second function for Saccharomyces cerevisiae Rev1p. Mol Microbiol. 2000 Aug;37(3):549–554. doi: 10.1046/j.1365-2958.2000.01997.x. [DOI] [PubMed] [Google Scholar]
  35. Nelson J. R., Lawrence C. W., Hinkle D. C. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science. 1996 Jun 14;272(5268):1646–1649. doi: 10.1126/science.272.5268.1646. [DOI] [PubMed] [Google Scholar]
  36. Njagi G. D., Kilbey B. J. cdc7-1 a temperature sensitive cell-cycle mutant which interferes with induced mutagenesis in Saccharomyces cerevisiae. Mol Gen Genet. 1982;186(4):478–481. doi: 10.1007/BF00337951. [DOI] [PubMed] [Google Scholar]
  37. Nyberg Kara A., Michelson Rhett J., Putnam Charles W., Weinert Ted A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet. 2002 Jun 11;36:617–656. doi: 10.1146/annurev.genet.36.060402.113540. [DOI] [PubMed] [Google Scholar]
  38. Ostroff R. M., Sclafani R. A. Cell cycle regulation of induced mutagenesis in yeast. Mutat Res. 1995 Jul;329(2):143–152. doi: 10.1016/0027-5107(95)00030-m. [DOI] [PubMed] [Google Scholar]
  39. Paulovich A. G., Armour C. D., Hartwell L. H. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics. 1998 Sep;150(1):75–93. doi: 10.1093/genetics/150.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Prakash L. Effect of Genes Controlling Radiation Sensitivity on Chemically Induced Mutations in SACCHAROMYCES CEREVISIAE. Genetics. 1976 Jun;83(2):285–301. doi: 10.1093/genetics/83.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Roush A. A., Suarez M., Friedberg E. C., Radman M., Siede W. Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability. Mol Gen Genet. 1998 Apr;257(6):686–692. doi: 10.1007/s004380050698. [DOI] [PubMed] [Google Scholar]
  42. Sclafani R. A. Cdc7p-Dbf4p becomes famous in the cell cycle. J Cell Sci. 2000 Jun;113(Pt 12):2111–2117. doi: 10.1242/jcs.113.12.2111. [DOI] [PubMed] [Google Scholar]
  43. Sclafani R. A., Patterson M., Rosamond J., Fangman W. L. Differential regulation of the yeast CDC7 gene during mitosis and meiosis. Mol Cell Biol. 1988 Jan;8(1):293–300. doi: 10.1128/mcb.8.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Siede W., Friedberg A. S., Dianova I., Friedberg E. C. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Genetics. 1994 Oct;138(2):271–281. doi: 10.1093/genetics/138.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Siede W., Friedberg A. S., Friedberg E. C. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7985–7989. doi: 10.1073/pnas.90.17.7985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Snaith H. A., Brown G. W., Forsburg S. L. Schizosaccharomyces pombe Hsk1p is a potential cds1p target required for genome integrity. Mol Cell Biol. 2000 Nov;20(21):7922–7932. doi: 10.1128/mcb.20.21.7922-7932.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Spence J., Sadis S., Haas A. L., Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol. 1995 Mar;15(3):1265–1273. doi: 10.1128/mcb.15.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tercero José Antonio, Longhese Maria Pia, Diffley John F. X. A central role for DNA replication forks in checkpoint activation and response. Mol Cell. 2003 May;11(5):1323–1336. doi: 10.1016/s1097-2765(03)00169-2. [DOI] [PubMed] [Google Scholar]
  50. Torres-Ramos C. A., Yoder B. L., Burgers P. M., Prakash S., Prakash L. Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9676–9681. doi: 10.1073/pnas.93.18.9676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Warbrick E. The puzzle of PCNA's many partners. Bioessays. 2000 Nov;22(11):997–1006. doi: 10.1002/1521-1878(200011)22:11<997::AID-BIES6>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  52. Washington M. T., Johnson R. E., Prakash S., Prakash L. Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase eta. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3094–3099. doi: 10.1073/pnas.050491997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Xiao W., Chow B. L., Broomfield S., Hanna M. The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics. 2000 Aug;155(4):1633–1641. doi: 10.1093/genetics/155.4.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Xiao W., Fontanie T., Bawa S., Kohalmi L. REV3 is required for spontaneous but not methylation damage-induced mutagenesis of Saccharomyces cerevisiae cells lacking O6-methylguanine DNA methyltransferase. Mutat Res. 1999 Dec 16;431(1):155–165. doi: 10.1016/s0027-5107(99)00203-1. [DOI] [PubMed] [Google Scholar]
  55. Yuan F., Zhang Y., Rajpal D. K., Wu X., Guo D., Wang M., Taylor J. S., Wang Z. Specificity of DNA lesion bypass by the yeast DNA polymerase eta. J Biol Chem. 2000 Mar 17;275(11):8233–8239. doi: 10.1074/jbc.275.11.8233. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES