Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jan 15;26(2):490–496. doi: 10.1093/nar/26.2.490

Replacement of the active site tyrosine of vaccinia DNA topoisomerase by glutamate, cysteine or histidine converts the enzyme into a site-specific endonuclease.

J Wittschieben 1, B O Petersen 1, S Shuman 1
PMCID: PMC147276  PMID: 9421505

Abstract

Vaccinia topoisomerase forms a covalent protein-DNA intermediate at 5'-CCCTT downward arrow sites in duplex DNA. The T downward arrow nucleotide is linked via a 3'-phosphodiester bond to Tyr-274 of the enzyme. Here, we report that mutant enzymes containing glutamate, cysteine or histidine in lieu of Tyr-274 catalyze endonucleolytic cleavage of a 60 bp duplex DNA at the CCCTT downward arrow site to yield a 3' phosphate-terminated product. The Cys-274 mutant forms trace levels of a covalent protein-DNA complex, suggesting that the DNA cleavage reaction may proceed through a cysteinyl-phosphate intermediate. However, the His-274 and Glu-274 mutants evince no detectable accumulation of a covalent protein-DNA adduct. Glu-274 is the most active of the mutants tested. The pH dependence of the endonuclease activity of Glu-274 (optimum pH = 6.5) is distinct from that of the wild-type enzyme in hydrolysis of the covalent adduct (optimum pH = 9.5). At pH 6.5, the Glu-274 endonuclease reaction is slower by 5-6 orders of magnitude than the rate of covalent adduct formation by the wild-type topoisomerase, but is approximately 20 times faster than the rate of hydrolysis by the wild-type covalent adduct. We discuss two potential mechanisms to account for the apparent conversion of a topoisomerase into an endonuclease.

Full Text

The Full Text of this article is available as a PDF (236.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caron P. R., Wang J. C. Appendix. II: Alignment of primary sequences of DNA topoisomerases. Adv Pharmacol. 1994;29B:271–297. doi: 10.1016/s1054-3589(08)61143-6. [DOI] [PubMed] [Google Scholar]
  2. Denu J. M., Stuckey J. A., Saper M. A., Dixon J. E. Form and function in protein dephosphorylation. Cell. 1996 Nov 1;87(3):361–364. doi: 10.1016/s0092-8674(00)81356-2. [DOI] [PubMed] [Google Scholar]
  3. Gao G. J., Fonda M. L. Evidence for a phosphoenzyme intermediate formed during catalysis by pyridoxal phosphatase from human erythrocytes. Arch Biochem Biophys. 1994 Aug 15;313(1):166–172. doi: 10.1006/abbi.1994.1373. [DOI] [PubMed] [Google Scholar]
  4. Hanai R., Wang J. C. The mechanism of sequence-specific DNA cleavage and strand transfer by phi X174 gene A* protein. J Biol Chem. 1993 Nov 15;268(32):23830–23836. [PubMed] [Google Scholar]
  5. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  6. Håkansson K., Doherty A. J., Shuman S., Wigley D. B. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell. 1997 May 16;89(4):545–553. doi: 10.1016/s0092-8674(00)80236-6. [DOI] [PubMed] [Google Scholar]
  7. Kumble K. D., Ahn K., Kornberg A. Phosphohistidyl active sites in polyphosphate kinase of Escherichia coli. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14391–14395. doi: 10.1073/pnas.93.25.14391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moréra S., Chiadmi M., LeBras G., Lascu I., Janin J. Mechanism of phosphate transfer by nucleoside diphosphate kinase: X-ray structures of the phosphohistidine intermediate of the enzymes from Drosophila and Dictyostelium. Biochemistry. 1995 Sep 5;34(35):11062–11070. [PubMed] [Google Scholar]
  9. Noirot-Gros M. F., Ehrlich S. D. Change of a catalytic reaction carried out by a DNA replication protein. Science. 1996 Nov 1;274(5288):777–780. doi: 10.1126/science.274.5288.777. [DOI] [PubMed] [Google Scholar]
  10. Petersen B. O., Shuman S. DNA strand transfer reactions catalyzed by vaccinia topoisomerase: hydrolysis and glycerololysis of the covalent protein-DNA intermediate. Nucleic Acids Res. 1997 Jun 1;25(11):2091–2097. doi: 10.1093/nar/25.11.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Roth M. J., Brown D. R., Hurwitz J. Analysis of bacteriophage phi X174 gene A protein-mediated termination and reinitiation of phi X DNA synthesis. II. Structural characterization of the covalent phi X A protein-DNA complex. J Biol Chem. 1984 Aug 25;259(16):10556–10568. [PubMed] [Google Scholar]
  12. Sekiguchi J., Cheng C., Shuman S. Kinetic analysis of DNA and RNA strand transfer reactions catalyzed by vaccinia topoisomerase. J Biol Chem. 1997 Jun 20;272(25):15721–15728. doi: 10.1074/jbc.272.25.15721. [DOI] [PubMed] [Google Scholar]
  13. Sekiguchi J., Shuman S. Requirements for noncovalent binding of vaccinia topoisomerase I to duplex DNA. Nucleic Acids Res. 1994 Dec 11;22(24):5360–5365. doi: 10.1093/nar/22.24.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shuman S. DNA strand transfer reactions catalyzed by vaccinia topoisomerase I. J Biol Chem. 1992 Apr 25;267(12):8620–8627. [PubMed] [Google Scholar]
  15. Shuman S., Golder M., Moss B. Characterization of vaccinia virus DNA topoisomerase I expressed in Escherichia coli. J Biol Chem. 1988 Nov 5;263(31):16401–16407. [PubMed] [Google Scholar]
  16. Shuman S., Kane E. M., Morham S. G. Mapping the active-site tyrosine of vaccinia virus DNA topoisomerase I. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9793–9797. doi: 10.1073/pnas.86.24.9793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shuman S., Prescott J. Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I. J Biol Chem. 1990 Oct 15;265(29):17826–17836. [PubMed] [Google Scholar]
  18. Shuman S., Schwer B. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases. Mol Microbiol. 1995 Aug;17(3):405–410. doi: 10.1111/j.1365-2958.1995.mmi_17030405.x. [DOI] [PubMed] [Google Scholar]
  19. Shuman S. Site-specific interaction of vaccinia virus topoisomerase I with duplex DNA. Minimal DNA substrate for strand cleavage in vitro. J Biol Chem. 1991 Jun 15;266(17):11372–11379. [PubMed] [Google Scholar]
  20. Siebers A., Altendorf K. Characterization of the phosphorylated intermediate of the K+-translocating Kdp-ATPase from Escherichia coli. J Biol Chem. 1989 Apr 5;264(10):5831–5838. [PubMed] [Google Scholar]
  21. Stivers J. T., Shuman S., Mildvan A. S. Vaccinia DNA topoisomerase I: kinetic evidence for general acid-base catalysis and a conformational step. Biochemistry. 1994 Dec 27;33(51):15449–15458. doi: 10.1021/bi00255a027. [DOI] [PubMed] [Google Scholar]
  22. Stivers J. T., Shuman S., Mildvan A. S. Vaccinia DNA topoisomerase I: single-turnover and steady-state kinetic analysis of the DNA strand cleavage and ligation reactions. Biochemistry. 1994 Jan 11;33(1):327–339. doi: 10.1021/bi00167a043. [DOI] [PubMed] [Google Scholar]
  23. Wedekind J. E., Frey P. A., Rayment I. The structure of nucleotidylated histidine-166 of galactose-1-phosphate uridylyltransferase provides insight into phosphoryl group transfer. Biochemistry. 1996 Sep 10;35(36):11560–11569. doi: 10.1021/bi9612677. [DOI] [PubMed] [Google Scholar]
  24. Wittschieben J., Shuman S. Mechanism of DNA transesterification by vaccinia topoisomerase: catalytic contributions of essential residues Arg-130, Gly-132, Tyr-136 and Lys-167. Nucleic Acids Res. 1997 Aug 1;25(15):3001–3008. doi: 10.1093/nar/25.15.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wittschieben J., Shuman S. Mutational analysis of vaccinia DNA topoisomerase defines amino acid residues essential for covalent catalysis. J Biol Chem. 1994 Nov 25;269(47):29978–29983. [PubMed] [Google Scholar]
  26. Yokochi T., Kato J., Ikeda H. DNA nicking by Escherichia coli topoisomerase IV with a substitution mutation from tyrosine to histidine at the active site. Genes Cells. 1996 Dec;1(12):1069–1075. doi: 10.1046/j.1365-2443.1996.d01-226.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES