Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Feb 1;26(3):831–838. doi: 10.1093/nar/26.3.831

Solution structure of a highly stable DNA duplex conjugated to a minor groove binder.

S Kumar 1, M W Reed 1, H B Gamper Jr 1, V V Gorn 1, E A Lukhtanov 1, M Foti 1, J West 1, R B Meyer Jr 1, B I Schweitzer 1
PMCID: PMC147317  PMID: 9443977

Abstract

The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions.

Full Text

The Full Text of this article is available as a PDF (406.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afonina I., Kutyavin I., Lukhtanov E., Meyer R. B., Gamper H. Sequence-specific arrest of primer extension on single-stranded DNA by an oligonucleotide-minor groove binder conjugate. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3199–3204. doi: 10.1073/pnas.93.8.3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Afonina I., Zivarts M., Kutyavin I., Lukhtanov E., Gamper H., Meyer R. B. Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res. 1997 Jul 1;25(13):2657–2660. doi: 10.1093/nar/25.13.2657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnott S., Hukins D. W. Optimised parameters for A-DNA and B-DNA. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504–1509. doi: 10.1016/0006-291x(72)90243-4. [DOI] [PubMed] [Google Scholar]
  4. Arnott S., Hukins D. W. Refinement of the structure of B-DNA and implications for the analysis of x-ray diffraction data from fibers of biopolymers. J Mol Biol. 1973 Dec 5;81(2):93–105. doi: 10.1016/0022-2836(73)90182-4. [DOI] [PubMed] [Google Scholar]
  5. Asseline U., Delarue M., Lancelot G., Toulmé F., Thuong N. T., Montenay-Garestier T., Hélène C. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3297–3301. doi: 10.1073/pnas.81.11.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boger D. L., Johnson D. S. CC-1065 and the duocarmycins: unraveling the keys to a new class of naturally derived DNA alkylating agents. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3642–3649. doi: 10.1073/pnas.92.9.3642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Callihan D., West J., Kumar S., Schweitzer B. I., Logan T. M. Simple, distortion-free homonuclear spectra of peptides and nucleic acids in water using excitation sculpting. J Magn Reson B. 1996 Jul;112(1):82–85. doi: 10.1006/jmrb.1996.0114. [DOI] [PubMed] [Google Scholar]
  8. DiGabriele A. D., Sanderson M. R., Steitz T. A. Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1816–1820. doi: 10.1073/pnas.86.6.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foti M., Marshalko S., Schurter E., Kumar S., Beardsley G. P., Schweitzer B. I. Solution structure of a DNA decamer containing the antiviral drug ganciclovir: combined use of NMR, restrained molecular dynamics, and full relaxation matrix refinement. Biochemistry. 1997 May 6;36(18):5336–5345. doi: 10.1021/bi962604e. [DOI] [PubMed] [Google Scholar]
  10. Gamper H. B., Cimino G. D., Hearst J. E. Solution hybridization of crosslinkable DNA oligonucleotides to bacteriophage M13 DNA. Effect of secondary structure on hybridization kinetics and equilibria. J Mol Biol. 1987 Sep 20;197(2):349–362. doi: 10.1016/0022-2836(87)90128-8. [DOI] [PubMed] [Google Scholar]
  11. Goljer I., Kumar S., Bolton P. H. Refined solution structure of a DNA heteroduplex containing an aldehydic abasic site. J Biol Chem. 1995 Sep 29;270(39):22980–22987. doi: 10.1074/jbc.270.39.22980. [DOI] [PubMed] [Google Scholar]
  12. Gronenborn A. M., Clore G. M. Analysis of the relative contributions of the nuclear Overhauser interproton distance restraints and the empirical energy function in the calculation of oligonucleotide structures using restrained molecular dynamics. Biochemistry. 1989 Jul 11;28(14):5978–5984. doi: 10.1021/bi00440a039. [DOI] [PubMed] [Google Scholar]
  13. Kim S. G., Lin L. J., Reid B. R. Determination of nucleic acid backbone conformation by 1H NMR. Biochemistry. 1992 Apr 14;31(14):3564–3574. doi: 10.1021/bi00129a003. [DOI] [PubMed] [Google Scholar]
  14. Kumar S., Bathini Y., Joseph T., Pon R. T., Lown J. W. Structural and dynamic aspects of non-intercalative (1:1) binding of a thiazole-lexitropsin to the decadeoxyribonucleotide d-[CGCAATTGCG]2: An 1H-NMR and molecular modeling study. J Biomol Struct Dyn. 1991 Aug;9(1):1–21. doi: 10.1080/07391102.1991.10507890. [DOI] [PubMed] [Google Scholar]
  15. Kutyavin I. V., Lukhtanov E. A., Gamper H. B., Meyer R. B. Oligonucleotides with conjugated dihydropyrroloindole tripeptides: base composition and backbone effects on hybridization. Nucleic Acids Res. 1997 Sep 15;25(18):3718–3723. doi: 10.1093/nar/25.18.3718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Latham J. A., Cech T. R. Defining the inside and outside of a catalytic RNA molecule. Science. 1989 Jul 21;245(4915):276–282. doi: 10.1126/science.2501870. [DOI] [PubMed] [Google Scholar]
  17. Lee C. S., Sun D., Kizu R., Hurley L. H. Determination of the structural features of (+)-CC-1065 that are responsible for bending and winding of DNA. Chem Res Toxicol. 1991 Mar-Apr;4(2):203–213. doi: 10.1021/tx00020a013. [DOI] [PubMed] [Google Scholar]
  18. Lin C. H., Hill G. C., Hurley L. H. Characterization of a 12-mer duplex d(GGCGGAGTTAGG).d(CCTAACTCCGCC) containing a highly reactive (+)-CC-1065 sequence by 1H and 31P NMR, hydroxyl-radical footprinting, and NOESY restrained molecular dynamics calculations. Chem Res Toxicol. 1992 Mar-Apr;5(2):167–182. doi: 10.1021/tx00026a005. [DOI] [PubMed] [Google Scholar]
  19. Lin C. H., Sun D. Y., Hurley L. H. (+)-CC-1065 produces bending of DNA that appears to resemble adenine/thymine tracts. Chem Res Toxicol. 1991 Jan-Feb;4(1):21–26. doi: 10.1021/tx00019a003. [DOI] [PubMed] [Google Scholar]
  20. Lukhtanov E. A., Kutyavin I. V., Gamper H. B., Meyer R. B., Jr Oligodeoxyribonucleotides with conjugated dihydropyrroloindole oligopeptides: preparation and hybridization properties. Bioconjug Chem. 1995 Jul-Aug;6(4):418–426. doi: 10.1021/bc00034a012. [DOI] [PubMed] [Google Scholar]
  21. Marck C., Kakiuchi N., Guschlbauer W. Specific interaction of netropsin, distamycin-3 and analogs with LC duplexes: reversion towards the B form of the 2'-deoxy-.2'-deoxy-2'-fluoro-hybrid duplexes upon specific interaction with netropsin, distamycin-3 and analogs. Nucleic Acids Res. 1982 Oct 11;10(19):6147–6161. doi: 10.1093/nar/10.19.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nielsen P. E., Egholm M., Buchardt O. Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem. 1994 Jan-Feb;5(1):3–7. doi: 10.1021/bc00025a001. [DOI] [PubMed] [Google Scholar]
  23. Powers R., Gorenstein D. G. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of a covalent CPI-CDPI2-oligodeoxyribonucleotide decamer complex. Biochemistry. 1990 Oct 23;29(42):9994–10008. doi: 10.1021/bi00494a033. [DOI] [PubMed] [Google Scholar]
  24. Ravishanker G., Swaminathan S., Beveridge D. L., Lavery R., Sklenar H. Conformational and helicoidal analysis of 30 PS of molecular dynamics on the d(CGCGAATTCGCG) double helix: "curves", dials and windows. J Biomol Struct Dyn. 1989 Feb;6(4):669–699. doi: 10.1080/07391102.1989.10507729. [DOI] [PubMed] [Google Scholar]
  25. Reynolds V. L., McGovren J. P., Hurley L. H. The chemistry, mechanism of action and biological properties of CC-1065, a potent antitumor antibiotic. J Antibiot (Tokyo) 1986 Mar;39(3):319–334. doi: 10.7164/antibiotics.39.319. [DOI] [PubMed] [Google Scholar]
  26. Schweitzer B. I., Mikita T., Kellogg G. W., Gardner K. H., Beardsley G. P. Solution structure of a DNA dodecamer containing the anti-neoplastic agent arabinosylcytosine: combined use of NMR, restrained molecular dynamics, and full relaxation matrix refinement. Biochemistry. 1994 Sep 27;33(38):11460–11475. [PubMed] [Google Scholar]
  27. Singh M. P., Kumar S., Joseph T., Pon R. T., Lown J. W. A 1H-NMR study of the DNA binding characteristics of thioformyldistamycin, an amide isosteric lexitropsin. Biochemistry. 1992 Jul 21;31(28):6453–6461. doi: 10.1021/bi00143a014. [DOI] [PubMed] [Google Scholar]
  28. Wagner R. W., Matteucci M. D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993 Jun 4;260(5113):1510–1513. doi: 10.1126/science.7684856. [DOI] [PubMed] [Google Scholar]
  29. Wyatt J. R., Puglisi J. D., Tinoco I., Jr RNA folding: pseudoknots, loops and bulges. Bioessays. 1989 Oct;11(4):100–106. doi: 10.1002/bies.950110406. [DOI] [PubMed] [Google Scholar]
  30. Wähnert U., Zimmer O., Luck G., Pitra O. (dA-dT) dependent inactivation of the DNA template properties by interaction with netropsin and distamycin A. Nucleic Acids Res. 1975 Mar;2(3):391–404. doi: 10.1093/nar/2.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Young M. A., Srinivasan J., Goljer I., Kumar S., Beveridge D. L., Bolton P. H. Structure determination and analysis of local bending in an A-tract DNA duplex: comparison of results from crystallography, nuclear magnetic resonance, and molecular dynamics simulation on d(CGCAAAAATGCG). Methods Enzymol. 1995;261:121–144. doi: 10.1016/s0076-6879(95)61007-3. [DOI] [PubMed] [Google Scholar]
  32. Zimmer C., Wähnert U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog Biophys Mol Biol. 1986;47(1):31–112. doi: 10.1016/0079-6107(86)90005-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES