Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Feb 1;26(3):735–743. doi: 10.1093/nar/26.3.735

Determination of interactions between structured nucleic acids by fluorescence resonance energy transfer (FRET): selection of target sites for functional nucleic acids.

N Ota 1, K Hirano 1, M Warashina 1, A Andrus 1, B Mullah 1, K Hatanaka 1, K Taira 1
PMCID: PMC147322  PMID: 9443965

Abstract

We previously developed a method for monitoring the integrity of oligonucleotides in vitro and in vivo by quantitating fluorescence resonance energy transfer (FRET) between two different fluorochromes attached to a single oligonucleotide. As an extension of this analysis, we examined changes in the extent of FRET in the presence or absence of target nucleic acids with a specific sequence and a higher-ordered structure. In this system FRET was maximal when probes were free in solution and a decrease in FRET was evidence of successful hybridization. We used a single-stranded oligodeoxyribonucleotide labeled at its 5'-end and its 3'-end with 6-carboxyfluorescein and 6-carboxytetramethylrhodamine, respectively. Incubation of the probe with a single-stranded complementary oligonucleotide reduced the FRET. Moreover, a small change in FRET was also observed when the probe was incubated with an oligonucleotide in which the target site had been embedded in a stable hairpin structure. The decrease in the extent of FRET depended on the length of the stem region of the hairpin structure and also on the higher-ordered structure of the probe. These results indicate that this spectrofluorometric method and FRET probes can be used to estimate the efficacy of hybridization between a probe and its target site within highly ordered structures. This conclusion based on changes in FRET was confirmed by gel-shift assays.

Full Text

The Full Text of this article is available as a PDF (666.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barcellona M. L., Gratton E. Fluorescence anisotropy of DNA/DAPI complex: torsional dynamics and geometry of the complex. Biophys J. 1996 May;70(5):2341–2351. doi: 10.1016/S0006-3495(96)79800-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bjornson K. P., Amaratunga M., Moore K. J., Lohman T. M. Single-turnover kinetics of helicase-catalyzed DNA unwinding monitored continuously by fluorescence energy transfer. Biochemistry. 1994 Nov 29;33(47):14306–14316. doi: 10.1021/bi00251a044. [DOI] [PubMed] [Google Scholar]
  3. Clegg R. M., Murchie A. I., Zechel A., Lilley D. M. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2994–2998. doi: 10.1073/pnas.90.7.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper J. P., Hagerman P. J. Analysis of fluorescence energy transfer in duplex and branched DNA molecules. Biochemistry. 1990 Oct 2;29(39):9261–9268. doi: 10.1021/bi00491a022. [DOI] [PubMed] [Google Scholar]
  5. Fujita S., Koguma T., Ohkawa J., Mori K., Kohda T., Kise H., Nishikawa S., Iwakura M., Taira K. Discrimination of a single base change in a ribozyme using the gene for dihydrofolate reductase as a selective marker in Escherichia coli. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):391–396. doi: 10.1073/pnas.94.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghosh S. S., Eis P. S., Blumeyer K., Fearon K., Millar D. P. Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer. Nucleic Acids Res. 1994 Aug 11;22(15):3155–3159. doi: 10.1093/nar/22.15.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gohlke C., Murchie A. I., Lilley D. M., Clegg R. M. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11660–11664. doi: 10.1073/pnas.91.24.11660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hirao I., Nishimura Y., Naraoka T., Watanabe K., Arata Y., Miura K. Extraordinary stable structure of short single-stranded DNA fragments containing a specific base sequence: d(GCGAAAGC). Nucleic Acids Res. 1989 Mar 25;17(6):2223–2231. doi: 10.1093/nar/17.6.2223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holland P. M., Abramson R. D., Watson R., Gelfand D. H. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7276–7280. doi: 10.1073/pnas.88.16.7276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hung S. C., Ju J., Mathies R. A., Glazer A. N. Energy transfer primers with 5- or 6-carboxyrhodamine-6G as acceptor chromophores. Anal Biochem. 1996 Jul 1;238(2):165–170. doi: 10.1006/abio.1996.0270. [DOI] [PubMed] [Google Scholar]
  11. Illsley N. P., Lin H. Y., Verkman A. S. Lipid domain structure correlated with membrane protein function in placental microvillus vesicles. Biochemistry. 1987 Jan 27;26(2):446–454. doi: 10.1021/bi00376a016. [DOI] [PubMed] [Google Scholar]
  12. Jares-Erijman E. A., Jovin T. M. Determination of DNA helical handedness by fluorescence resonance energy transfer. J Mol Biol. 1996 Apr 5;257(3):597–617. doi: 10.1006/jmbi.1996.0188. [DOI] [PubMed] [Google Scholar]
  13. Ju J., Glazer A. N., Mathies R. A. Cassette labeling for facile construction of energy transfer fluorescent primers. Nucleic Acids Res. 1996 Mar 15;24(6):1144–1148. doi: 10.1093/nar/24.6.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee S. P., Censullo M. L., Kim H. G., Knutson J. R., Han M. K. Characterization of endonucleolytic activity of HIV-1 integrase using a fluorogenic substrate. Anal Biochem. 1995 May 20;227(2):295–301. doi: 10.1006/abio.1995.1284. [DOI] [PubMed] [Google Scholar]
  15. Livak K. J., Flood S. J., Marmaro J., Giusti W., Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995 Jun;4(6):357–362. doi: 10.1101/gr.4.6.357. [DOI] [PubMed] [Google Scholar]
  16. Mergny J. L., Boutorine A. S., Garestier T., Belloc F., Rougée M., Bulychev N. V., Koshkin A. A., Bourson J., Lebedev A. V., Valeur B. Fluorescence energy transfer as a probe for nucleic acid structures and sequences. Nucleic Acids Res. 1994 Mar 25;22(6):920–928. doi: 10.1093/nar/22.6.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nelson P. S., Kent M., Muthini S. Oligonucleotide labeling methods. 3. Direct labeling of oligonucleotides employing a novel, non-nucleosidic, 2-aminobutyl-1,3-propanediol backbone. Nucleic Acids Res. 1992 Dec 11;20(23):6253–6259. doi: 10.1093/nar/20.23.6253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohkawa J., Yuyama N., Takebe Y., Nishikawa S., Taira K. Importance of independence in ribozyme reactions: kinetic behavior of trimmed and of simply connected multiple ribozymes with potential activity against human immunodeficiency virus. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11302–11306. doi: 10.1073/pnas.90.23.11302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Orita M., Vinayak R., Andrus A., Warashina M., Chiba A., Kaniwa H., Nishikawa F., Nishikawa S., Taira K. Magnesium-mediated conversion of an inactive form of a hammerhead ribozyme to an active complex with its substrate. An investigation by NMR spectroscopy. J Biol Chem. 1996 Apr 19;271(16):9447–9454. doi: 10.1074/jbc.271.16.9447. [DOI] [PubMed] [Google Scholar]
  20. Parkhurst K. M., Parkhurst L. J. Kinetic studies by fluorescence resonance energy transfer employing a double-labeled oligonucleotide: hybridization to the oligonucleotide complement and to single-stranded DNA. Biochemistry. 1995 Jan 10;34(1):285–292. doi: 10.1021/bi00001a035. [DOI] [PubMed] [Google Scholar]
  21. Polisky B. ColE1 replication control circuitry: sense from antisense. Cell. 1988 Dec 23;55(6):929–932. doi: 10.1016/0092-8674(88)90235-8. [DOI] [PubMed] [Google Scholar]
  22. Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sarver N., Cantin E. M., Chang P. S., Zaia J. A., Ladne P. A., Stephens D. A., Rossi J. J. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990 Mar 9;247(4947):1222–1225. doi: 10.1126/science.2107573. [DOI] [PubMed] [Google Scholar]
  24. Sixou S., Szoka F. C., Jr, Green G. A., Giusti B., Zon G., Chin D. J. Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucleic Acids Res. 1994 Feb 25;22(4):662–668. doi: 10.1093/nar/22.4.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
  26. Theisen P., McCollum C., Andrus A. Fluorescent dye phosphoramidite labelling of oligonucleotides. Nucleic Acids Symp Ser. 1992;(27):99–100. doi: 10.1002/chin.199302246. [DOI] [PubMed] [Google Scholar]
  27. Tomizawa J. Control of ColE1 plasmid replication: the process of binding of RNA I to the primer transcript. Cell. 1984 Oct;38(3):861–870. doi: 10.1016/0092-8674(84)90281-2. [DOI] [PubMed] [Google Scholar]
  28. Tuschl T., Gohlke C., Jovin T. M., Westhof E., Eckstein F. A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science. 1994 Nov 4;266(5186):785–789. doi: 10.1126/science.7973630. [DOI] [PubMed] [Google Scholar]
  29. Tyagi S., Kramer F. R. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996 Mar;14(3):303–308. doi: 10.1038/nbt0396-303. [DOI] [PubMed] [Google Scholar]
  30. Uchiyama H., Hirano K., Kashiwasake-Jibu M., Taira K. Detection of undegraded oligonucleotides in vivo by fluorescence resonance energy transfer. Nuclease activities in living sea urchin eggs. J Biol Chem. 1996 Jan 5;271(1):380–384. doi: 10.1074/jbc.271.1.380. [DOI] [PubMed] [Google Scholar]
  31. Wagner R. W. Gene inhibition using antisense oligodeoxynucleotides. Nature. 1994 Nov 24;372(6504):333–335. doi: 10.1038/372333a0. [DOI] [PubMed] [Google Scholar]
  32. Woolf T. M., Melton D. A., Jennings C. G. Specificity of antisense oligonucleotides in vivo. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7305–7309. doi: 10.1073/pnas.89.16.7305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yang M., Ghosh S. S., Millar D. P. Direct measurement of thermodynamic and kinetic parameters of DNA triple helix formation by fluorescence spectroscopy. Biochemistry. 1994 Dec 27;33(51):15329–15337. doi: 10.1021/bi00255a014. [DOI] [PubMed] [Google Scholar]
  34. Zelphati O., Szoka F. C., Jr Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11493–11498. doi: 10.1073/pnas.93.21.11493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhou D. M., Zhang L. H., Taira K. Explanation by the double-metal-ion mechanism of catalysis for the differential metal ion effects on the cleavage rates of 5'-oxy and 5'-thio substrates by a hammerhead ribozyme. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14343–14348. doi: 10.1073/pnas.94.26.14343. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES