Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1

Lecithin bilayers. Density measurement and molecular interactions.

J F Nagle, D A Wilkinson
PMCID: PMC1473523  PMID: 687759

Abstract

Density measurement are reported for bilayer dispersions of a series of saturated lecithins. For chain lengths with, respectively, 14, 15, 16, 17, and 18 carbons per chain, the values for the volume changes at the main transition are 0.027, 0.031, 0.037, 0.040 and 0.045 ml/g. The main transition temperature extrapolates with increasing chain length to the melting temperature of polyethylene. Volume changes at the lower transition are an order of magnitude smaller than the main transition. Single phase thermal expansion coefficients are also reported. The combination of X-ray data and density data indicated that the volume changes are predominantly due to the hydrocarbon chains, thus enabling the volume vCH2 of the methylene groups to be computed as a function of temperature. From this and knowledge of intermolecular interactions in hydrocarbon chains, the change in the interchain van der Waals energy, delta UvdW, at the main transition is computed for the lecithins and also for the alkanes and polyethylene at the melting transition. Using the experimental enthalpies of transition and delta UvdW, the energy equation is consistently balanced for all three systems. This yields estimates of the change in the number of gauche rotamers in the lecithins at the main transition. The consistency of these calculations supports the conclusion that the most important molecular energies for the main transition in lecithin bilayers are the hydrocarbon chain interactions and the rotational isomeric energies, and the conclusion that the main phase transition is analogous to the melting transition in the alkanes from the hexagonal phase to the liquid phase, but with some modifications.

Full text

PDF
162

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blazyk J. F., Melchoir D. L., Steim J. M. An automated differential scanning dilatometer. Anal Biochem. 1975 Oct;68(2):586–599. doi: 10.1016/0003-2697(75)90654-5. [DOI] [PubMed] [Google Scholar]
  2. Flory P. J. Spatial configuration of macromolecular chains. Science. 1975 Jun 27;188(4195):1268–1276. doi: 10.1126/science.188.4195.1268. [DOI] [PubMed] [Google Scholar]
  3. Gaber B. P., Peticolas W. L. On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochim Biophys Acta. 1977 Mar 1;465(2):260–274. doi: 10.1016/0005-2736(77)90078-5. [DOI] [PubMed] [Google Scholar]
  4. Horwitz A. F., Klein M. P. The fluid state of lecithin bilayers. J Supramol Struct. 1973;1(4):281–284. doi: 10.1002/jss.400010405. [DOI] [PubMed] [Google Scholar]
  5. Huang C., Charlton J. P. Studies on phosphatidylcholine vesicles. Determination of partial specific volumes by sedimentation velocity method. J Biol Chem. 1971 Apr 25;246(8):2555–2560. [PubMed] [Google Scholar]
  6. Janiak M. J., Small D. M., Shipley G. G. Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry. 1976 Oct 19;15(21):4575–4580. doi: 10.1021/bi00666a005. [DOI] [PubMed] [Google Scholar]
  7. Liu N. I., Kay R. L. Redetermination of the pressure dependence of the lipid bilayer phase transition. Biochemistry. 1977 Jul 26;16(15):3484–3486. doi: 10.1021/bi00634a030. [DOI] [PubMed] [Google Scholar]
  8. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Melchior D. L., Morowitz H. J. Dilatometry of dilute suspensions of synthetic lecithin aggregates. Biochemistry. 1972 Nov 21;11(24):4558–4562. doi: 10.1021/bi00774a020. [DOI] [PubMed] [Google Scholar]
  10. Nagle J. F. Lipid bilayer phase transition: density measurements and theory. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3443–3444. doi: 10.1073/pnas.70.12.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nagle J. F. Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J Membr Biol. 1976;27(3):233–250. doi: 10.1007/BF01869138. [DOI] [PubMed] [Google Scholar]
  12. Plachy W. Z., Lanyi J. K., Kates M. Lipid interactions in membranes of extremely halophilic bacteria. I. Electron spin resonance and dilatometric studies of bilayer structure. Biochemistry. 1974 Nov 19;13(24):4906–4913. doi: 10.1021/bi00721a005. [DOI] [PubMed] [Google Scholar]
  13. Rand R. P., Chapman D., Larsson K. Tilted hydrocarbon chains of dipalmitoyl lecithin become perpendicular to the bilayer before melting. Biophys J. 1975 Nov;15(11):1117–1124. doi: 10.1016/S0006-3495(75)85888-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schindler H., Seelig J. Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. Biochemistry. 1975 Jun 3;14(11):2283–2287. doi: 10.1021/bi00682a001. [DOI] [PubMed] [Google Scholar]
  15. Seelig J., Gally G. U., Wohlgemuth R. Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. Biochim Biophys Acta. 1977 Jun 2;467(2):109–119. doi: 10.1016/0005-2736(77)90188-2. [DOI] [PubMed] [Google Scholar]
  16. Sheetz M. P., Chan S. I. Effect of sonication on the structure of lecithin bilayers. Biochemistry. 1972 Nov 21;11(24):4573–4581. doi: 10.1021/bi00774a024. [DOI] [PubMed] [Google Scholar]
  17. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  18. Trudell J. R., Payan D. G., Chin J. H., Cohen E. N. Pressure-induced elevation of phase transition temperature in dipalmitoylphosphatidylcholine bilayers. An electron spin resonance measurement of the enthalpy of phase transition. Biochim Biophys Acta. 1974 Dec 24;373(3):436–443. doi: 10.1016/0005-2736(74)90023-6. [DOI] [PubMed] [Google Scholar]
  19. Wilkinson D. A., Nagle J. F. A differential dilatometer. Anal Biochem. 1978 Jan;84(1):263–271. doi: 10.1016/0003-2697(78)90509-2. [DOI] [PubMed] [Google Scholar]
  20. Yellin N., Levin I. W. Hydrocarbon trans-gauche isomerization in phospholipid bilayer gel assemblies. Biochemistry. 1977 Feb 22;16(4):642–647. doi: 10.1021/bi00623a014. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES