Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Mar 1;26(5):1205–1213. doi: 10.1093/nar/26.5.1205

RNA editing in the free-living bodonid Bodo saltans.

D Blom 1, A de Haan 1, M van den Berg 1, P Sloof 1, M Jirku 1, J Lukes 1, R Benne 1
PMCID: PMC147379  PMID: 9469817

Abstract

In parasitic kinetoplastid protozoa, mitochondrial (mt) mRNAs are post-transcriptionally edited by insertion and deletion of uridylate residues, the information being provided by guide (g) RNAs. In order to further explore the role and evolutionary history of this process, we searched for editing in mt RNAs of the free-living bodonid Bodo saltans. We found extensive editing in the transcript for NADH dehydrogenase (ND) subunit 5, which is unedited in trypanosomatids. In contrast, B.saltans cytochrome c oxidase (cox) subunit 2 and maxicircle unidentified reading frame (MURF) 2 RNAs display limited editing in the same regions as their trypanosomatid counterparts. A putative intramolecular cox2 gRNA and the gene for gMURF2-I directing the insertion of only one U in the 5' editing domain of MURF2 RNA, are conserved in B.saltans. This lends (further) evolutionary support to the proposed role of these sequences as gRNAs. Phylogenetic analysis showed that B.saltans is more closely related to trypanosomatids than the cryptobiids Trypanoplasma borreli and Cryptobia helicis, in line with the trypanosomatid-like cox2 and MURF2 RNA editing patterns. Nevertheless, other features like the apparent absence of a catenated mtDNA network, are shared with bodonid and cryptobiid species. ND5 RNA editing may represent yet another example of editing 'on the way out' during kinetoplastid evolution, but in view of the fact that cox2 RNA is unedited in T. borreli and C.helicis, we infer that the editing of this RNA may have arisen relatively recently. Our results provide the first examples of RNA editing in a free-living kinetoplastid, indicating that there is no direct link between U-insertion/deletion editing and a parasitic lifestyle.

Full Text

The Full Text of this article is available as a PDF (390.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfonzo J. D., Thiemann O., Simpson L. The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res. 1997 Oct 1;25(19):3751–3759. doi: 10.1093/nar/25.19.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arts G. J., Benne R. Mechanism and evolution of RNA editing in kinetoplastida. Biochim Biophys Acta. 1996 Jun 3;1307(1):39–54. doi: 10.1016/0167-4781(96)00021-8. [DOI] [PubMed] [Google Scholar]
  3. Benne R. RNA editing in trypanosomes: is there a message? Trends Genet. 1990 Jun;6(6):177–181. doi: 10.1016/0168-9525(90)90173-4. [DOI] [PubMed] [Google Scholar]
  4. Benne R., Van den Burg J., Brakenhoff J. P., Sloof P., Van Boom J. H., Tromp M. C. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986 Sep 12;46(6):819–826. doi: 10.1016/0092-8674(86)90063-2. [DOI] [PubMed] [Google Scholar]
  5. Blum B., Bakalara N., Simpson L. A model for RNA editing in kinetoplastid mitochondria: "guide" RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 1990 Jan 26;60(2):189–198. doi: 10.1016/0092-8674(90)90735-w. [DOI] [PubMed] [Google Scholar]
  6. Borst P., Fase-Fowler F. The maxi-circle of Trypanosoma brucei kinetoplast DNA. Biochim Biophys Acta. 1979 Nov 22;565(1):1–12. doi: 10.1016/0005-2787(79)90078-9. [DOI] [PubMed] [Google Scholar]
  7. Borst P. Why kinetoplast DNA networks? Trends Genet. 1991 May;7(5):139–141. doi: 10.1016/0168-9525(91)90374-y. [DOI] [PubMed] [Google Scholar]
  8. Cavalier-Smith T. Cell and genome coevolution: facultative anaerobiosis, glycosomes and kinetoplastan RNA editing. Trends Genet. 1997 Jan;13(1):6–9. doi: 10.1016/s0168-9525(96)30116-9. [DOI] [PubMed] [Google Scholar]
  9. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  10. Corell R. A., Myler P., Stuart K. Trypanosoma brucei mitochondrial CR4 gene encodes an extensively edited mRNA with completely edited sequence only in bloodstream forms. Mol Biochem Parasitol. 1994 Mar;64(1):65–74. doi: 10.1016/0166-6851(94)90135-x. [DOI] [PubMed] [Google Scholar]
  11. Covello P. S., Gray M. W. On the evolution of RNA editing. Trends Genet. 1993 Aug;9(8):265–268. doi: 10.1016/0168-9525(93)90011-6. [DOI] [PubMed] [Google Scholar]
  12. Fernandes A. P., Nelson K., Beverley S. M. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11608–11612. doi: 10.1073/pnas.90.24.11608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hajduk S. L., Harris M. E., Pollard V. W. RNA editing in kinetoplastid mitochondria. FASEB J. 1993 Jan;7(1):54–63. doi: 10.1096/fasebj.7.1.8422975. [DOI] [PubMed] [Google Scholar]
  14. Hajduk S. L., Siqueira A. M., Vickerman K. Kinetoplast DNA of Bodo caudatus: a noncatenated structure. Mol Cell Biol. 1986 Dec;6(12):4372–4378. doi: 10.1128/mcb.6.12.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hensgens L. A., Brakenhoff J., De Vries B. F., Sloof P., Tromp M. C., Van Boom J. H., Benne R. The sequence of the gene for cytochrome c oxidase subunit I, a frameshift containing gene for cytochrome c oxidase subunit II and seven unassigned reading frames in Trypanosoma brucei mitochondrial maxi-circle DNA. Nucleic Acids Res. 1984 Oct 11;12(19):7327–7344. doi: 10.1093/nar/12.19.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kable M. L., Heidmann S., Stuart K. D. RNA editing: getting U into RNA. Trends Biochem Sci. 1997 May;22(5):162–166. doi: 10.1016/s0968-0004(97)01041-4. [DOI] [PubMed] [Google Scholar]
  17. Kim K. S., Teixeira S. M., Kirchhoff L. V., Donelson J. E. Transcription and editing of cytochrome oxidase II RNAs in Trypanosoma cruzi. J Biol Chem. 1994 Jan 14;269(2):1206–1211. [PubMed] [Google Scholar]
  18. Kleisen C. M., Borst P., Weijers P. J. The structure of kinetoplast DNA. I. Properties of the intact multi-circular complex from Crithidia luciliae. Biochim Biophys Acta. 1975 May 1;390(2):155–167. [PubMed] [Google Scholar]
  19. Landweber L. F., Gilbert W. Phylogenetic analysis of RNA editing: a primitive genetic phenomenon. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):918–921. doi: 10.1073/pnas.91.3.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Landweber L. F., Gilbert W. RNA editing as a source of genetic variation. Nature. 1993 May 13;363(6425):179–182. doi: 10.1038/363179a0. [DOI] [PubMed] [Google Scholar]
  21. Landweber L. F. The evolution of RNA editing in kinetoplastid protozoa. Biosystems. 1992;28(1-3):41–45. doi: 10.1016/0303-2647(92)90006-k. [DOI] [PubMed] [Google Scholar]
  22. Lukes J., Arts G. J., van den Burg J., de Haan A., Opperdoes F., Sloof P., Benne R. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. EMBO J. 1994 Nov 1;13(21):5086–5098. doi: 10.1002/j.1460-2075.1994.tb06838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maslov D. A., Avila H. A., Lake J. A., Simpson L. Evolution of RNA editing in kinetoplastid protozoa. Nature. 1994 Mar 24;368(6469):345–348. doi: 10.1038/368345a0. [DOI] [PubMed] [Google Scholar]
  24. Maslov D. A., Lukes J., Jirku M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol. 1996 Jan;75(2):197–205. doi: 10.1016/0166-6851(95)02526-x. [DOI] [PubMed] [Google Scholar]
  25. Maslov D. A., Simpson L. RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli. Mol Cell Biol. 1994 Dec;14(12):8174–8182. doi: 10.1128/mcb.14.12.8174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rauch C. A., Perez-Morga D., Cozzarelli N. R., Englund P. T. The absence of supercoiling in kinetoplast DNA minicircles. EMBO J. 1993 Feb;12(2):403–411. doi: 10.1002/j.1460-2075.1993.tb05672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ray D. S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol Cell Biol. 1989 Mar;9(3):1365–1367. doi: 10.1128/mcb.9.3.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Read L. K., Wilson K. D., Myler P. J., Stuart K. Editing of Trypanosoma brucei maxicircle CR5 mRNA generates variable carboxy terminal predicted protein sequences. Nucleic Acids Res. 1994 Apr 25;22(8):1489–1495. doi: 10.1093/nar/22.8.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Riley G. R., Myler P. J., Stuart K. Quantitation of RNA editing substrates, products and potential intermediates: implications for developmental regulation. Nucleic Acids Res. 1995 Feb 25;23(4):708–712. doi: 10.1093/nar/23.4.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shapiro T. A., Englund P. T. The structure and replication of kinetoplast DNA. Annu Rev Microbiol. 1995;49:117–143. doi: 10.1146/annurev.mi.49.100195.001001. [DOI] [PubMed] [Google Scholar]
  32. Shaw J. M., Feagin J. E., Stuart K., Simpson L. Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons. Cell. 1988 May 6;53(3):401–411. doi: 10.1016/0092-8674(88)90160-2. [DOI] [PubMed] [Google Scholar]
  33. Simpson L., Maslov D. A. Ancient origin of RNA editing in kinetoplastid protozoa. Curr Opin Genet Dev. 1994 Dec;4(6):887–894. doi: 10.1016/0959-437x(94)90075-2. [DOI] [PubMed] [Google Scholar]
  34. Simpson L., Maslov D. A. RNA editing and the evolution of parasites. Science. 1994 Jun 24;264(5167):1870–1871. doi: 10.1126/science.8009214. [DOI] [PubMed] [Google Scholar]
  35. Simpson L., Shaw J. RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa. Cell. 1989 May 5;57(3):355–366. doi: 10.1016/0092-8674(89)90911-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simpson L. The genomic organization of guide RNA genes in kinetoplastid protozoa: several conundrums and their solutions. Mol Biochem Parasitol. 1997 Jun;86(2):133–141. doi: 10.1016/s0166-6851(97)00037-6. [DOI] [PubMed] [Google Scholar]
  37. Sloof P., Benne R. RNA editing in kinetoplastid parasites: what to do with U. Trends Microbiol. 1997 May;5(5):189–195. doi: 10.1016/S0966-842X(97)01034-2. [DOI] [PubMed] [Google Scholar]
  38. Stuart K. The RNA editing process in Trypanosoma brucei. Semin Cell Biol. 1993 Aug;4(4):251–260. doi: 10.1006/scel.1993.1030. [DOI] [PubMed] [Google Scholar]
  39. Thiemann O. H., Maslov D. A., Simpson L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J. 1994 Dec 1;13(23):5689–5700. doi: 10.1002/j.1460-2075.1994.tb06907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tullis R. H., Rubin H. Calcium protects DNase I from proteinase K: a new method for the removal of contaminating RNase from DNase I. Anal Biochem. 1980 Sep 1;107(1):260–264. doi: 10.1016/0003-2697(80)90519-9. [DOI] [PubMed] [Google Scholar]
  41. Van der Spek H., Speijer D., Arts G. J., Van den Burg J., Van Steeg H., Sloof P., Benne R. RNA editing in transcripts of the mitochondrial genes of the insect trypanosome Crithidia fasciculata. EMBO J. 1990 Jan;9(1):257–262. doi: 10.1002/j.1460-2075.1990.tb08103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yasuhira S., Simpson L. Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA. 1996 Nov;2(11):1153–1160. [PMC free article] [PubMed] [Google Scholar]
  43. Yasuhira S., Simpson L. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA. 1995 Aug;1(6):634–643. [PMC free article] [PubMed] [Google Scholar]
  44. de la Cruz V. F., Neckelmann N., Simpson L. Sequences of six genes and several open reading frames in the kinetoplast maxicircle DNA of Leishmania tarentolae. J Biol Chem. 1984 Dec 25;259(24):15136–15147. [PubMed] [Google Scholar]
  45. van der Spek H., Arts G. J., Zwaal R. R., van den Burg J., Sloof P., Benne R. Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. EMBO J. 1991 May;10(5):1217–1224. doi: 10.1002/j.1460-2075.1991.tb08063.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van der Spek H., Arts G. J., van den Burg J., Sloof P., Benne R. The nucleotide sequence of mitochondrial maxicircle genes of Crithidia fasciculata. Nucleic Acids Res. 1989 Jun 26;17(12):4876–4876. doi: 10.1093/nar/17.12.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES