Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 1;26(7):1793–1800. doi: 10.1093/nar/26.7.1793

Cruciform-extruding regulatory element controls cell-specific activity of the tyrosine hydroxylase gene promoter.

E L Kim 1, H Peng 1, F M Esparza 1, S Z Maltchenko 1, M K Stachowiak 1
PMCID: PMC147441  PMID: 9512554

Abstract

Tyrosine hydroxylase (TH) is expressed specifically in catecholaminergic cells. We have identified a novel regulatory sequence in the upstream region of the bovine TH gene promoter formed by a dyad symmetry element (DSE1;-352/-307 bp). DSE1 supports TH promoter activity in TH-expressing bovine adrenal medulla chromaffin (BAMC) cells and inhibits promoter activity in non-expressing TE671 cells. DNase I footprinting of relaxed TH promoter DNA showed weak binding of nuclear BAMC cell proteins to a short sequence in the right DSE1 arm. In BAMC cells, deletion of the right arm markedly reduced the expression of luciferase from the TH promoter. However, deletion of the left DSE1 arm or its reversed orientation (RevL) also inactivated the TH promoter. In supercoiled TH promoter, DSE1 assumes a cruciform-like conformation i.e., it binds cruciform-specific 2D3 antibody, and S1 nuclease-cleavage and OsO4-modification assays have identified an imperfect cruciform extruded by the DSE1. DNase I footprinting of supercoiled plasmid showed that cruciformed DSE1 is targeted by nuclear proteins more efficiently than the linear duplex isomer and that the protected site encompasses the left arm and center of DSE1. Our results suggest that the disruption of intrastrand base-pairing preventing cruciform formation and protein binding to DSE1 is responsible for its inactivation in DSE1 mutants. DSE1 cruciform may act as a target site for activator (BAMC cells) and repressor (TE671) proteins. Its extrusion emerges as a novel mechanism that controls cell-specific promoter activity.

Full Text

The Full Text of this article is available as a PDF (405.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee S. A., Hoppe P., Brilliant M., Chikaraishi D. M. 5' flanking sequences of the rat tyrosine hydroxylase gene target accurate tissue-specific, developmental, and transsynaptic expression in transgenic mice. J Neurosci. 1992 Nov;12(11):4460–4467. doi: 10.1523/JNEUROSCI.12-11-04460.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell D., Sabloff M., Zannis-Hadjopoulos M., Price G. Anti-cruciform DNA affinity purification of active mammalian origins of replication. Biochim Biophys Acta. 1991 Jul 23;1089(3):299–308. doi: 10.1016/0167-4781(91)90169-m. [DOI] [PubMed] [Google Scholar]
  3. Bianchi M. E., Beltrame M., Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science. 1989 Feb 24;243(4894 Pt 1):1056–1059. doi: 10.1126/science.2922595. [DOI] [PubMed] [Google Scholar]
  4. Boulikas T. A compilation and classification of DNA binding sites for protein transcription factors from vertebrates. Crit Rev Eukaryot Gene Expr. 1994;4(2-3):117–321. doi: 10.1615/critreveukargeneexpr.v4.i2-3.10. [DOI] [PubMed] [Google Scholar]
  5. Chase J. W., Williams K. R. Single-stranded DNA binding proteins required for DNA replication. Annu Rev Biochem. 1986;55:103–136. doi: 10.1146/annurev.bi.55.070186.000535. [DOI] [PubMed] [Google Scholar]
  6. D'Mello S. R., Turzai L. M., Gioio A. E., Kaplan B. B. Isolation and structural characterization of the bovine tyrosine hydroxylase gene. J Neurosci Res. 1989 May;23(1):31–40. doi: 10.1002/jnr.490230105. [DOI] [PubMed] [Google Scholar]
  7. Dayn A., Malkhosyan S., Duzhy D., Lyamichev V., Panchenko Y., Mirkin S. Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions. J Bacteriol. 1991 Apr;173(8):2658–2664. doi: 10.1128/jb.173.8.2658-2664.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Delic J., Onclercq R., Moisan-Coppey M. Inhibition and enhancement of eukaryotic gene expression by potential non-B DNA sequences. Biochem Biophys Res Commun. 1991 Dec 16;181(2):818–826. doi: 10.1016/0006-291x(91)91263-c. [DOI] [PubMed] [Google Scholar]
  9. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frank-Kamenetskii M. D. Protonated DNA structures. Methods Enzymol. 1992;211:180–191. doi: 10.1016/0076-6879(92)11011-7. [DOI] [PubMed] [Google Scholar]
  11. Frappier L., Price G. B., Martin R. G., Zannis-Hadjopoulos M. Characterization of the binding specificity of two anticruciform DNA monoclonal antibodies. J Biol Chem. 1989 Jan 5;264(1):334–341. [PubMed] [Google Scholar]
  12. Fung B. P., Yoon S. O., Chikaraishi D. M. Sequences that direct rat tyrosine hydroxylase gene expression. J Neurochem. 1992 Jun;58(6):2044–2052. doi: 10.1111/j.1471-4159.1992.tb10945.x. [DOI] [PubMed] [Google Scholar]
  13. Gellert M., O'Dea M. H., Mizuuchi K. Slow cruciform transitions in palindromic DNA. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5545–5549. doi: 10.1073/pnas.80.18.5545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glucksmann-Kuis M. A., Dai X., Markiewicz P., Rothman-Denes L. B. E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell. 1996 Jan 12;84(1):147–154. doi: 10.1016/s0092-8674(00)81001-6. [DOI] [PubMed] [Google Scholar]
  15. Goc A., Stachowiak M. K. Bovine tyrosine hydroxylase gene-promoter regions involved in basal and angiotensin II-stimulated expression in nontransformed adrenal medullary cells. J Neurochem. 1994 Mar;62(3):834–843. doi: 10.1046/j.1471-4159.1994.62030834.x. [DOI] [PubMed] [Google Scholar]
  16. Hanke J. H., Hambor J. E., Kavathas P. Repetitive Alu elements form a cruciform structure that regulates the function of the human CD8 alpha T cell-specific enhancer. J Mol Biol. 1995 Feb 10;246(1):63–73. doi: 10.1006/jmbi.1994.0066. [DOI] [PubMed] [Google Scholar]
  17. Hanvey J. C., Klysik J., Wells R. D. Influence of DNA sequence on the formation of non-B right-handed helices in oligopurine.oligopyrimidine inserts in plasmids. J Biol Chem. 1988 May 25;263(15):7386–7396. [PubMed] [Google Scholar]
  18. Hemmick L. M., Ross M. E., Evinger M. J. Regulation of PNMT gene promoter constructs transfected into the TE 671 human medulloblastoma cell line. Neurosci Lett. 1995 Dec 1;201(1):77–80. doi: 10.1016/0304-3940(95)12142-q. [DOI] [PubMed] [Google Scholar]
  19. Iyer V., Struhl K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 1995 Jun 1;14(11):2570–2579. doi: 10.1002/j.1460-2075.1995.tb07255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim E. L., Esparza F. M., Stachowiak M. K. The roles of CRE, TRE, and TRE-adjacent S1 nuclease sensitive element in the regulation of tyrosine hydroxylase gene promoter activity by angiotensin II. J Neurochem. 1996 Jul;67(1):26–36. doi: 10.1046/j.1471-4159.1996.67010026.x. [DOI] [PubMed] [Google Scholar]
  21. Kim K. S., Tinti C., Song B., Cubells J. F., Joh T. H. Cyclic AMP-dependent protein kinase regulates basal and cyclic AMP-stimulated but not phorbol ester-stimulated transcription of the tyrosine hydroxylase gene. J Neurochem. 1994 Sep;63(3):834–842. doi: 10.1046/j.1471-4159.1994.63030834.x. [DOI] [PubMed] [Google Scholar]
  22. Klug A. Structures of DNA: a summary. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):1215–1223. doi: 10.1101/sqb.1983.047.01.137. [DOI] [PubMed] [Google Scholar]
  23. Klysik J., Shimizu M. Escherichia coli single-stranded DNA-binding protein alters the structure of intramolecular triplexes in plasmids. FEBS Lett. 1993 Nov 1;333(3):261–267. doi: 10.1016/0014-5793(93)80666-i. [DOI] [PubMed] [Google Scholar]
  24. Kumer S. C., Vrana K. E. Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem. 1996 Aug;67(2):443–462. doi: 10.1046/j.1471-4159.1996.67020443.x. [DOI] [PubMed] [Google Scholar]
  25. Lazaroff M., Patankar S., Yoon S. O., Chikaraishi D. M. The cyclic AMP response element directs tyrosine hydroxylase expression in catecholaminergic central and peripheral nervous system cell lines from transgenic mice. J Biol Chem. 1995 Sep 15;270(37):21579–21589. doi: 10.1074/jbc.270.37.21579. [DOI] [PubMed] [Google Scholar]
  26. Lyubchenko Y. L., Shlyakhtenko L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):496–501. doi: 10.1073/pnas.94.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McAllister R. M., Isaacs H., Rongey R., Peer M., Au W., Soukup S. W., Gardner M. B. Establishment of a human medulloblastoma cell line. Int J Cancer. 1977 Aug 15;20(2):206–212. doi: 10.1002/ijc.2910200207. [DOI] [PubMed] [Google Scholar]
  28. McMurray C. T., Wilson W. D., Douglass J. O. Hairpin formation within the enhancer region of the human enkephalin gene. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):666–670. doi: 10.1073/pnas.88.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Min N., Joh T. H., Kim K. S., Peng C., Son J. H. 5' upstream DNA sequence of the rat tyrosine hydroxylase gene directs high-level and tissue-specific expression to catecholaminergic neurons in the central nervous system of transgenic mice. Brain Res Mol Brain Res. 1994 Dec;27(2):281–289. doi: 10.1016/0169-328x(94)90011-6. [DOI] [PubMed] [Google Scholar]
  30. Mizuuchi K., Mizuuchi M., Gellert M. Cruciform structures in palindromic DNA are favored by DNA supercoiling. J Mol Biol. 1982 Apr 5;156(2):229–243. doi: 10.1016/0022-2836(82)90325-4. [DOI] [PubMed] [Google Scholar]
  31. Murchie A. I., Lilley D. M. Supercoiled DNA and cruciform structures. Methods Enzymol. 1992;211:158–180. doi: 10.1016/0076-6879(92)11010-g. [DOI] [PubMed] [Google Scholar]
  32. Nankova B., Hiremagalur B., Menezes A., Zeman R., Sabban E. Promoter elements and second messenger pathways involved in transcriptional activation of tyrosine hydroxylase by ionomycin. Brain Res Mol Brain Res. 1996 Jan;35(1-2):164–172. doi: 10.1016/0169-328x(95)00201-3. [DOI] [PubMed] [Google Scholar]
  33. Palecek E. Probing DNA structure with osmium tetroxide complexes in vitro. Methods Enzymol. 1992;212:139–155. doi: 10.1016/0076-6879(92)12010-n. [DOI] [PubMed] [Google Scholar]
  34. Pearson C. E., Ruiz M. T., Price G. B., Zannis-Hadjopoulos M. Cruciform DNA binding protein in HeLa cell extracts. Biochemistry. 1994 Nov 29;33(47):14185–14196. doi: 10.1021/bi00251a030. [DOI] [PubMed] [Google Scholar]
  35. Pearson C. E., Zannis-Hadjopoulos M., Price G. B., Zorbas H. A novel type of interaction between cruciform DNA and a cruciform binding protein from HeLa cells. EMBO J. 1995 Apr 3;14(7):1571–1580. doi: 10.1002/j.1460-2075.1995.tb07143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Peck L. J., Wang J. C. Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6206–6210. doi: 10.1073/pnas.80.20.6206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Solaro P., Greger B., Kemper B. Detection and partial purification of a cruciform-resolving activity (X-solvase) from nuclear extracts of mouse B-cells. Eur J Biochem. 1995 Jun 15;230(3):926–933. doi: 10.1111/j.1432-1033.1995.tb20638.x. [DOI] [PubMed] [Google Scholar]
  38. Spiro C., Bazett-Jones D. P., Wu X., McMurray C. T. DNA structure determines protein binding and transcriptional efficiency of the proenkephalin cAMP-responsive enhancer. J Biol Chem. 1995 Nov 17;270(46):27702–27710. doi: 10.1074/jbc.270.46.27702. [DOI] [PubMed] [Google Scholar]
  39. Spiro C., Richards J. P., Chandrasekaran S., Brennan R. G., McMurray C. T. Secondary structure creates mismatched base pairs required for high-affinity binding of cAMP response element-binding protein to the human enkephalin enhancer. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4606–4610. doi: 10.1073/pnas.90.10.4606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stachowiak M. K., Goc A., Hong J. S., Poisner A., Jiang H. K., Stachowiak E. K. Regulation of tyrosine hydroxylase gene expression in depolarized non-transformed bovine adrenal medullary cells: second messenger systems and promoter mechanisms. Brain Res Mol Brain Res. 1994 Mar;22(1-4):309–319. doi: 10.1016/0169-328x(94)90059-0. [DOI] [PubMed] [Google Scholar]
  41. Stachowiak M. K., Jiang H. K., Poisner A. M., Tuominen R. K., Hong J. S. Short and long term regulation of catecholamine biosynthetic enzymes by angiotensin in cultured adrenal medullary cells. Molecular mechanisms and nature of second messenger systems. J Biol Chem. 1990 Mar 15;265(8):4694–4702. [PubMed] [Google Scholar]
  42. Stachowiak M. K., Moffett J., Joy A., Puchacz E., Florkiewicz R., Stachowiak E. K. Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells. J Cell Biol. 1994 Oct;127(1):203–223. doi: 10.1083/jcb.127.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Steinmetzer K., Zannis-Hadjopoulos M., Price G. B. Anti-cruciform monoclonal antibody and cruciform DNA interaction. J Mol Biol. 1995 Nov 17;254(1):29–37. doi: 10.1006/jmbi.1995.0596. [DOI] [PubMed] [Google Scholar]
  44. Tugores A., Brenner D. A. A method for in vitro DNase I footprinting analysis on supercoiled templates. Biotechniques. 1994 Sep;17(3):410–412. [PubMed] [Google Scholar]
  45. Tugores A., Magness S. T., Brenner D. A. A single promoter directs both housekeeping and erythroid preferential expression of the human ferrochelatase gene. J Biol Chem. 1994 Dec 9;269(49):30789–30797. [PubMed] [Google Scholar]
  46. Waga S., Mizuno S., Yoshida M. Chromosomal protein HMG1 removes the transcriptional block caused by the cruciform in supercoiled DNA. J Biol Chem. 1990 Nov 15;265(32):19424–19428. [PubMed] [Google Scholar]
  47. Wang Z. Y., Masaharu N., Qiu Q. Q., Takimoto Y., Deuel T. F. An S1 nuclease-sensitive region in the first intron of human platelet-derived growth factor A-chain gene contains a negatively acting cell type-specific regulatory element. Nucleic Acids Res. 1994 Feb 11;22(3):457–464. doi: 10.1093/nar/22.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ward G. K., Shihab-el-Deen A., Zannis-Hadjopoulos M., Price G. B. DNA cruciforms and the nuclear supporting structure. Exp Cell Res. 1991 Jul;195(1):92–98. doi: 10.1016/0014-4827(91)90503-m. [DOI] [PubMed] [Google Scholar]
  49. Weisman-Shomer P., Fry M. QUAD, a protein from hepatocyte chromatin that binds selectively to guanine-rich quadruplex DNA. J Biol Chem. 1993 Feb 15;268(5):3306–3312. [PubMed] [Google Scholar]
  50. Wells R. D. Unusual DNA structures. J Biol Chem. 1988 Jan 25;263(3):1095–1098. [PubMed] [Google Scholar]
  51. Wittig B., Dorbic T., Rich A. The level of Z-DNA in metabolically active, permeabilized mammalian cell nuclei is regulated by torsional strain. J Cell Biol. 1989 Mar;108(3):755–764. doi: 10.1083/jcb.108.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wittig B., Wölfl S., Dorbic T., Vahrson W., Rich A. Transcription of human c-myc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene. EMBO J. 1992 Dec;11(12):4653–4663. doi: 10.1002/j.1460-2075.1992.tb05567.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wu H. Y., Shyy S. H., Wang J. C., Liu L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell. 1988 May 6;53(3):433–440. doi: 10.1016/0092-8674(88)90163-8. [DOI] [PubMed] [Google Scholar]
  54. Yoon S. O., Chikaraishi D. M. Tissue-specific transcription of the rat tyrosine hydroxylase gene requires synergy between an AP-1 motif and an overlapping E box-containing dyad. Neuron. 1992 Jul;9(1):55–67. doi: 10.1016/0896-6273(92)90220-8. [DOI] [PubMed] [Google Scholar]
  55. van Holde K., Zlatanova J. Unusual DNA structures, chromatin and transcription. Bioessays. 1994 Jan;16(1):59–68. doi: 10.1002/bies.950160110. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES