Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Apr 15;26(8):1927–1933. doi: 10.1093/nar/26.8.1927

Simple and efficient generation in vitro of nested deletions and inversions: Tn5 intramolecular transposition.

D York 1, K Welch 1, I Y Goryshin 1, W S Reznikoff 1
PMCID: PMC147497  PMID: 9518484

Abstract

We have exploited the intramolecular transposition preference of the Tn 5 in vitro transposition system to test its effectiveness as a tool for generation of nested families of deletions and inversions. A synthetic transposon was constructed containing an ori, an ampicillin resistance (Ampr) gene, a multi-cloning site (MCS) and two hyperactive end sequences. The donor DNA that adjoins the transposon contains a kanamycin resistance (Kanr) gene. Any Amprreplicating plasmid that has undergone a transposition event (Kans) will be targeted primarily to any insert in the MCS. Two different size targets were tested in the in vitro system. Synthetic transposon plasmids containing either target were incubated in the presence of purified transposase (Tnp) protein and transformed. Transposition frequencies (Ampr/Kans) for both targets were found to be 30-50%, of which >95% occur within the target sequence, in an apparently random manner. By a conservative estimate 10(5) or more deletions/inversions within a given segment of DNA can be expected from a single one-step 20 microl transposition reaction. These nested deletions can be used for structure-function analysis of proteins and for sequence analysis. The inversions provide nested sequencing templates of the opposite strand from the deletions.

Full Text

The Full Text of this article is available as a PDF (147.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. Use of transposon-promoted deletions in DNA sequence analysis. J Mol Biol. 1984 Oct 5;178(4):941–948. doi: 10.1016/0022-2836(84)90321-8. [DOI] [PubMed] [Google Scholar]
  2. Bainton R., Gamas P., Craig N. L. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell. 1991 May 31;65(5):805–816. doi: 10.1016/0092-8674(91)90388-f. [DOI] [PubMed] [Google Scholar]
  3. Benjamin H. W., Kleckner N. Intramolecular transposition by Tn10. Cell. 1989 Oct 20;59(2):373–383. doi: 10.1016/0092-8674(89)90298-5. [DOI] [PubMed] [Google Scholar]
  4. Berg C. M., Vartak N. B., Wang G., Xu X., Liu L., MacNeil D. J., Gewain K. M., Wiater L. A., Berg D. E. The m gamma delta-1 element, a small gamma delta (Tn1000) derivative useful for plasmid mutagenesis, allele replacement and DNA sequencing. Gene. 1992 Apr 1;113(1):9–16. doi: 10.1016/0378-1119(92)90664-b. [DOI] [PubMed] [Google Scholar]
  5. Berg C. M., Wang G., Strausbaugh L. D., Berg D. E. Transposon-facilitated sequencing of DNAs cloned in plasmids. Methods Enzymol. 1993;218:279–306. doi: 10.1016/0076-6879(93)18022-5. [DOI] [PubMed] [Google Scholar]
  6. Berg D. E., Johnsrud L., McDivitt L., Ramabhadran R., Hirschel B. J. Inverted repeats of Tn5 are transposable elements. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2632–2635. doi: 10.1073/pnas.79.8.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  8. Goryshin IYu, Kil Y. V., Reznikoff W. S. DNA length, bending, and twisting constraints on IS50 transposition. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10834–10838. doi: 10.1073/pnas.91.23.10834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guo L. H., Yang R. C., Wu R. An improved strategy for rapid direct sequencing of both strands of long DNA molecules cloned in a plasmid. Nucleic Acids Res. 1983 Aug 25;11(16):5521–5540. doi: 10.1093/nar/11.16.5521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hattori M., Tsukahara F., Furuhata Y., Tanahashi H., Hirose M., Saito M., Tsukuni S., Sakaki Y. A novel method for making nested deletions and its application for sequencing of a 300 kb region of human APP locus. Nucleic Acids Res. 1997 May 1;25(9):1802–1808. doi: 10.1093/nar/25.9.1802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  12. Imai Y., Matsushima Y., Sugimura T., Terada M. A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res. 1991 May 25;19(10):2785–2785. doi: 10.1093/nar/19.10.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jilk R. A., Makris J. C., Borchardt L., Reznikoff W. S. Implications of Tn5-associated adjacent deletions. J Bacteriol. 1993 Mar;175(5):1264–1271. doi: 10.1128/jb.175.5.1264-1271.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krishnan B. R., Jamry I., Berg D. E., Berg C. M., Chaplin D. D. Construction of a genomic DNA 'feature map' by sequencing from nested deletions: application to the HLA class I region. Nucleic Acids Res. 1995 Jan 11;23(1):117–122. doi: 10.1093/nar/23.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liu L., Whalen W., Das A., Berg C. M. Rapid sequencing of cloned DNA using a transposon for bidirectional priming: sequence of the Escherichia coli K-12 avtA gene. Nucleic Acids Res. 1987 Nov 25;15(22):9461–9469. doi: 10.1093/nar/15.22.9461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin C. H., Mayeda C. A., Davis C. A., Ericsson C. L., Knafels J. D., Mathog D. R., Celniker S. E., Lewis E. B., Palazzolo M. J. Complete sequence of the bithorax complex of Drosophila. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8398–8402. doi: 10.1073/pnas.92.18.8398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morisato D., Kleckner N. Transposase promotes double strand breaks and single strand joints at Tn10 termini in vivo. Cell. 1984 Nov;39(1):181–190. doi: 10.1016/0092-8674(84)90204-6. [DOI] [PubMed] [Google Scholar]
  18. Morita M., Umemoto A., Li Z. X., Nakazono N., Sugino Y. Nested deletions from a fixed site as an aid to nucleotide sequencing: an in vitro system using Tn3 transposase. DNA Res. 1996 Dec 31;3(6):431–433. doi: 10.1093/dnares/3.6.431. [DOI] [PubMed] [Google Scholar]
  19. Nag D. K., DasGupta U., Adelt G., Berg D. E. IS50-mediated inverse transposition: specificity and precision. Gene. 1985;34(1):17–26. doi: 10.1016/0378-1119(85)90290-2. [DOI] [PubMed] [Google Scholar]
  20. Ogel Z. B., McPherson M. J. Efficient deletion mutagenesis by PCR. Protein Eng. 1992 Jul;5(5):467–468. doi: 10.1093/protein/5.5.467. [DOI] [PubMed] [Google Scholar]
  21. Okita T. W. Nonrandom DNA sequencing of exonuclease III-deleted complementary DNA. Anal Biochem. 1985 Jan;144(1):207–211. doi: 10.1016/0003-2697(85)90107-1. [DOI] [PubMed] [Google Scholar]
  22. Pues H., Holz B., Weinhold E. Construction of a deletion library using a mixture of 5'-truncated primers for inverse PCR (IPCR). Nucleic Acids Res. 1997 Mar 15;25(6):1303–1304. doi: 10.1093/nar/25.6.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schaller H. The intergenic region and the origins for filamentous phage DNA replication. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):401–408. doi: 10.1101/sqb.1979.043.01.046. [DOI] [PubMed] [Google Scholar]
  24. Strathmann M., Hamilton B. A., Mayeda C. A., Simon M. I., Meyerowitz E. M., Palazzolo M. J. Transposon-facilitated DNA sequencing. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1247–1250. doi: 10.1073/pnas.88.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strausbaugh L. D., Bourke M. T., Sommer M. T., Coon M. E., Berg C. M. Probe mapping to facilitate transposon-based DNA sequencing. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6213–6217. doi: 10.1073/pnas.87.16.6213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sutcliffe J. G. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):77–90. doi: 10.1101/sqb.1979.043.01.013. [DOI] [PubMed] [Google Scholar]
  27. Tomcsanyi T., Berg C. M., Phadnis S. H., Berg D. E. Intramolecular transposition by a synthetic IS50 (Tn5) derivative. J Bacteriol. 1990 Nov;172(11):6348–6354. doi: 10.1128/jb.172.11.6348-6354.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang G., Blakesley R. W., Berg D. E., Berg C. M. pDUAL: a transposon-based cosmid cloning vector for generating nested deletions and DNA sequencing templates in vivo. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7874–7878. doi: 10.1073/pnas.90.16.7874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang G., Xu X., Chen J. M., Berg D. E., Berg C. M. Inversions and deletions generated by a mini-gamma delta (Tn1000) transposon. J Bacteriol. 1994 Mar;176(5):1332–1338. doi: 10.1128/jb.176.5.1332-1338.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wiegand T. W., Reznikoff W. S. Interaction of Tn5 transposase with the transposon termini. J Mol Biol. 1994 Jan 14;235(2):486–495. doi: 10.1006/jmbi.1994.1008. [DOI] [PubMed] [Google Scholar]
  31. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  32. Yohda M., Kato N., Endo I. Solid-phase nested deletion: a new subcloning-less method for generating nested deletions. DNA Res. 1995 Aug 31;2(4):175–181. doi: 10.1093/dnares/2.4.175. [DOI] [PubMed] [Google Scholar]
  33. Zhou M., Bhasin A., Reznikoff W. S. Molecular genetic analysis of transposase-end DNA sequence recognition: cooperativity of three adjacent base-pairs in specific interaction with a mutant Tn5 transposase. J Mol Biol. 1998 Mar 13;276(5):913–925. doi: 10.1006/jmbi.1997.1579. [DOI] [PubMed] [Google Scholar]
  34. Zhu K. Y., Clark J. M. Rapid construction of nested deletions of recombinant plasmid DNA for dideoxy sequencing. Biotechniques. 1995 Feb;18(2):222–224. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES