Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 1990 Sep;24(3):196–200. doi: 10.1136/bjsm.24.3.196

Metabolic predictors of middle-distance swimming performance.

J P Ribeiro 1, E Cadavid 1, J Baena 1, E Monsalvete 1, A Barna 1, E H De Rose 1
PMCID: PMC1478791  PMID: 2078807

Abstract

To evaluate the capacity of different metabolic indices to predict performance in middle distance swimming, 15 competitive swimmers performed a submaximal and a maximal 400 metres freestyle swimming event. Expired gases were collected in Douglas bags immediately after the events for the determination of VO2 max. Arterialized blood samples were collected for the determination of maximal blood lactate concentration and the velocity corresponding to blood lactate concentration of 4 mM. The results demonstrated (means +/- SD): maximal velocity of 1.44 +/- 0.05 m.s-1; velocity at 85 percent of VO2 max of 1.36 +/- 0.04 m.s-1; velocity at 4 mM of 1.32 +/- 0.04 m.s-1; VO2 max of 3.47 +/- 0.5 l.min-1; maximal blood lactate concentration of 11.8 +/- 2.5 mM. Multiple regression analysis relating metabolic indices and maximal velocity demonstrated that only velocity at 85 percent of VO2 max (r2 = 0.81) and velocity at 4 mM (r2 = 0.79) were significant predictors. Thus, 79 percent of the variance in the performance of 400 m freestyle can be accounted for the velocity at 85 percent of VO2 max or the velocity at 4 mM. The success in this event seems to depend on the swimmer's capacity to achieve higher velocities with lower blood lactate levels and/or utilizing a lower percentage of their VO2 max.

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archie J. P., Jr Mathematic coupling of data: a common source of error. Ann Surg. 1981 Mar;193(3):296–303. doi: 10.1097/00000658-198103000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barlow K., Weltman A., Schurrer R., Henritze J. Prediction of maximal effort bicycle ergometer endurance performance. Int J Sports Med. 1985 Aug;6(4):190–196. doi: 10.1055/s-2008-1025838. [DOI] [PubMed] [Google Scholar]
  3. Costill D. L., Kovaleski J., Porter D., Kirwan J., Fielding R., King D. Energy expenditure during front crawl swimming: predicting success in middle-distance events. Int J Sports Med. 1985 Oct;6(5):266–270. doi: 10.1055/s-2008-1025849. [DOI] [PubMed] [Google Scholar]
  4. Costill D. L. Metabolic responses during distance running. J Appl Physiol. 1970 Mar;28(3):251–255. doi: 10.1152/jappl.1970.28.3.251. [DOI] [PubMed] [Google Scholar]
  5. Farrell P. A., Wilmore J. H., Coyle E. F., Billing J. E., Costill D. L. Plasma lactate accumulation and distance running performance. Med Sci Sports. 1979 Winter;11(4):338–344. [PubMed] [Google Scholar]
  6. Hurley B. F., Hagberg J. M., Allen W. K., Seals D. R., Young J. C., Cuddihee R. W., Holloszy J. O. Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol Respir Environ Exerc Physiol. 1984 May;56(5):1260–1264. doi: 10.1152/jappl.1984.56.5.1260. [DOI] [PubMed] [Google Scholar]
  7. LaFontaine T. P., Londeree B. R., Spath W. K. The maximal steady state versus selected running events. Med Sci Sports Exerc. 1981;13(3):190–193. [PubMed] [Google Scholar]
  8. Léger L. A., Seliger V., Brassard L. Backward extrapolation of VO2max values from the O2 recovery curve. Med Sci Sports Exerc. 1980 Spring;12(1):24–27. [PubMed] [Google Scholar]
  9. McLellan T. M., Skinner J. S. Submaximal endurance performance related to the ventilation thresholds. Can J Appl Sport Sci. 1985 Jun;10(2):81–87. [PubMed] [Google Scholar]
  10. Montpetit R. R., Léger L. A., Lavoie J. M., Cazorla G. VO2 peak during free swimming using the backward extrapolation of the O2 recovery curve. Eur J Appl Physiol Occup Physiol. 1981;47(4):385–391. doi: 10.1007/BF02332966. [DOI] [PubMed] [Google Scholar]
  11. Olbrecht J., Madsen O., Mader A., Liesen H., Hollmann W. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises. Int J Sports Med. 1985 Apr;6(2):74–77. doi: 10.1055/s-2008-1025816. [DOI] [PubMed] [Google Scholar]
  12. Pendergast D. R., Di Prampero P. E., Craig A. B., Jr, Wilson D. R., Rennie D. W. Quantitative analysis of the front crawl in men and women. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):475–479. doi: 10.1152/jappl.1977.43.3.475. [DOI] [PubMed] [Google Scholar]
  13. Reybrouck T., Ghesquiere J., Cattaert A., Fagard R., Amery A. Ventilatory thresholds during short- and long-term exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1694–1700. doi: 10.1152/jappl.1983.55.6.1694. [DOI] [PubMed] [Google Scholar]
  14. Sjödin B., Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med. 1981 Feb;2(1):23–26. doi: 10.1055/s-2008-1034579. [DOI] [PubMed] [Google Scholar]
  15. Tanaka K., Matsuura Y., Matsuzaka A., Hirakoba K., Kumagai S., Sun S. O., Asano K. A longitudinal assessment of anaerobic threshold and distance-running performance. Med Sci Sports Exerc. 1984 Jun;16(3):278–282. [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES