Abstract
Two illustrative molecular models, designed to explain the Cole-Moore K+ hyperpolarization delay, are proposed and analyzed. Both introduce a process supplementary to the usual Hodgkin-Huxley (HH) one for a K+ channel. In both cases the new process becomes involved as a consequence of the conditioning hyperpolarization of the membrane and would account for the observed delay time in the K+ current after depolarization to near ENa. The first model uses adsorption or desorption of phospholipid molecules on the surface of the assumed protein K+ channel or gate. The second model involves the translocation of the charged subunits of the channel in the hyperpolarizing electric field.
Full text
PDF![960](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/9fda55689772/biophysj00720-0030.png)
![961](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/f510da52d0b3/biophysj00720-0031.png)
![962](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/4b9ef411123a/biophysj00720-0032.png)
![963](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/dd3ea4a6da3a/biophysj00720-0033.png)
![964](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/f0b7482779bd/biophysj00720-0034.png)
![965](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/ee323328dad0/biophysj00720-0035.png)
![966](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/3de91348495c/biophysj00720-0036.png)
![967](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/15eecf7c6c03/biophysj00720-0037.png)
![968](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/9241fdcda5b0/biophysj00720-0038.png)
![969](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/26b304424395/biophysj00720-0039.png)
![970](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/a8b31cca4423/biophysj00720-0040.png)
![971](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/fdebfe746da4/biophysj00720-0041.png)
![972](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/a7ff8f0869f1/biophysj00720-0042.png)
![973](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/72905a46bad5/biophysj00720-0043.png)
![974](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/21552949242e/biophysj00720-0044.png)
![975](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/48ee8e8d24bc/biophysj00720-0045.png)
![976](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46aa/1484237/250586605898/biophysj00720-0046.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COLE K. S., MOORE J. W. Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J. 1960 Sep;1:1–14. doi: 10.1016/s0006-3495(60)86871-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill T. L., Chen Y. D. On the theory of ion transport across the nerve membrane. 3. Potassium ion kinetics and cooperativity (with x=4,6,9). Proc Natl Acad Sci U S A. 1971 Oct;68(10):2488–2492. doi: 10.1073/pnas.68.10.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill T. L., Chen Y. D. On the theory of ion transport across the nerve membrane. II. Potassium ion kinetics and cooperativity (with x = 4). Proc Natl Acad Sci U S A. 1971 Aug;68(8):1711–1715. doi: 10.1073/pnas.68.8.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornberg R. D., McConnell H. M. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971 Mar 30;10(7):1111–1120. doi: 10.1021/bi00783a003. [DOI] [PubMed] [Google Scholar]
- Kornberg R. D., McConnell H. M. Lateral diffusion of phospholipids in a vesicle membrane. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2564–2568. doi: 10.1073/pnas.68.10.2564. [DOI] [PMC free article] [PubMed] [Google Scholar]