Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1973 Sep;13(9):926–940. doi: 10.1016/S0006-3495(73)86035-7

A New Material Concept for the Red Cell Membrane

E A Evans
PMCID: PMC1484375  PMID: 4733700

Abstract

The proposition is made that the red cell membrane is a two-dimensional, incompressible material and a general stress-strain law is developed for finite deformations. In the linear form, the character of such a material is analogous to a two-dimensional Mooney material (e.g., rubber), indicating that the molecular structure in the plane of the membrane would consist of long chains, randomly kinked and cross-linked in the natural state. The loose network could be provided by the protein component and the lipid phase could exist interstitially as a liquid bilayer, giving the membrane its two-dimensional incompressibility. The material provides the capability of large deformations exhibited by the discocyte and yet the rigidity associated with the osmotic spherocyte state. It is demonstrated that a membrane of this type can form a sphere at constant area. An illustrative example of the application to single cell discocyte-to-osmotic spherocyte transformations is presented.

Full text

PDF
927

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessis M., Lessin L. S. The discocyte-echinocyte equilibrium of the normal and pathologic red cell. Blood. 1970 Sep;36(3):399–403. [PubMed] [Google Scholar]
  2. Canham P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol. 1970 Jan;26(1):61–81. doi: 10.1016/s0022-5193(70)80032-7. [DOI] [PubMed] [Google Scholar]
  3. Evans E., Fung Y. C. Improved measurements of the erythrocyte geometry. Microvasc Res. 1972 Oct;4(4):335–347. doi: 10.1016/0026-2862(72)90069-6. [DOI] [PubMed] [Google Scholar]
  4. Fung Y. C. Theoretical considerations of the elasticity of red cells and small blood vessels. Fed Proc. 1966 Nov-Dec;25(6):1761–1772. [PubMed] [Google Scholar]
  5. Fung Y. C., Tong P. Theory of the sphering of red blood cells. Biophys J. 1968 Feb;8(2):175–198. doi: 10.1016/S0006-3495(68)86484-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldsmith H. L. Deformation of human red cells in tube flow. Biorheology. 1971 May;7(4):235–242. doi: 10.3233/bir-1971-7407. [DOI] [PubMed] [Google Scholar]
  7. Hochmuth R. M., Mohandas N. Uniaxial loading of the red-cell membrane. J Biomech. 1972 Sep;5(5):501–509. doi: 10.1016/0021-9290(72)90007-3. [DOI] [PubMed] [Google Scholar]
  8. Lew H. S. Electro-tension and torque in biological membranes modeled as a dipole sheet in fluid conductors. J Biomech. 1972 Jul;5(4):399–408. doi: 10.1016/0021-9290(72)90067-x. [DOI] [PubMed] [Google Scholar]
  9. Lopez L., Duck I. M., Hunt W. A. On the shape of the erythrocyte. Biophys J. 1968 Nov;8(11):1228–1235. doi: 10.1016/S0006-3495(68)86552-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. RAND R. P., BURTON A. C. Area and volume changes in hemolysis of single erythrocytes. J Cell Comp Physiol. 1963 Jun;61:245–253. doi: 10.1002/jcp.1030610306. [DOI] [PubMed] [Google Scholar]
  11. RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RAND R. P. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. II. VISCOELASTIC BREAKDOWN OF THE MEMBRANE. Biophys J. 1964 Jul;4:303–316. doi: 10.1016/s0006-3495(64)86784-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  14. Skalak R., Branemark P. I. Deformation of red blood cells in capillaries. Science. 1969 May 9;164(3880):717–719. doi: 10.1126/science.164.3880.717. [DOI] [PubMed] [Google Scholar]
  15. Skalak R., Tozeren A., Zarda R. P., Chien S. Strain energy function of red blood cell membranes. Biophys J. 1973 Mar;13(3):245–264. doi: 10.1016/S0006-3495(73)85983-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES