Abstract
Reverse transcription-PCR analysis in human epidermis, using primers from CYP2C18 and CYP2C19, revealed products containing combinations between canonically defined exons of these two genes. The major RNA species identified contained 2C18 exon 8 spliced with 2C19 exon 2. However, the terminal exons 1 and 9 were never detected in any of these composite molecules. When similar experiments were performed with liver RNA, exons 1 and 9 of both 2C18 and 2C19 were readily identified in composite 2C18/2C19 RNAs. Moreover, molecules containing 2C9 sequences spliced with 2C18 exons were also detected. These findings suggest that during the process of RNA splicing of the 2C transcripts, various exon juxtaposition events may occur, including combinations between exons of distinct genes. However, the frequency of these events is quite low and the levels of the composite RNA molecules are generally estimated at less than one molecule per cell. Since the order of these genes on chromosome 10q24 is CYP2C18 - CYP2C19 - CYP2C9, it is conceivable that the composite RNAs may result from multiple canonical and inverse splicing events of a long pre-mRNA that encompasses the three genes. However, these molecules could also be rationalized as being the products of trans splicing phenomena between distinct pre-mRNAs.
Full Text
The Full Text of this article is available as a PDF (280.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailleul B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res. 1996 Mar 15;24(6):1015–1019. doi: 10.1093/nar/24.6.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berget S. M. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. doi: 10.1074/jbc.270.6.2411. [DOI] [PubMed] [Google Scholar]
- Blencowe B. J., Issner R., Nickerson J. A., Sharp P. A. A coactivator of pre-mRNA splicing. Genes Dev. 1998 Apr 1;12(7):996–1009. doi: 10.1101/gad.12.7.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal T. Gene clusters and polycistronic transcription in eukaryotes. Bioessays. 1998 Jun;20(6):480–487. doi: 10.1002/(SICI)1521-1878(199806)20:6<480::AID-BIES6>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Blumenthal T. Trans-splicing and polycistronic transcription in Caenorhabditis elegans. Trends Genet. 1995 Apr;11(4):132–136. doi: 10.1016/s0168-9525(00)89026-5. [DOI] [PubMed] [Google Scholar]
- Braun S., Domdey H., Wiebauer K. Inverse splicing of a discontinuous pre-mRNA intron generates a circular exon in a HeLa cell nuclear extract. Nucleic Acids Res. 1996 Nov 1;24(21):4152–4157. doi: 10.1093/nar/24.21.4152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capel B., Swain A., Nicolis S., Hacker A., Walter M., Koopman P., Goodfellow P., Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993 Jun 4;73(5):1019–1030. doi: 10.1016/0092-8674(93)90279-y. [DOI] [PubMed] [Google Scholar]
- Caudevilla C., Serra D., Miliar A., Codony C., Asins G., Bach M., Hegardt F. G. Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12185–12190. doi: 10.1073/pnas.95.21.12185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chabot B., Blanchette M., Lapierre I., La Branche H. An intron element modulating 5' splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1. Mol Cell Biol. 1997 Apr;17(4):1776–1786. doi: 10.1128/mcb.17.4.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler S. D., Mayeda A., Yeakley J. M., Krainer A. R., Fu X. D. RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3596–3601. doi: 10.1073/pnas.94.8.3596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cocquerelle C., Mascrez B., Hétuin D., Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993 Jan;7(1):155–160. doi: 10.1096/fasebj.7.1.7678559. [DOI] [PubMed] [Google Scholar]
- Cogan J. D., Prince M. A., Lekhakula S., Bundey S., Futrakul A., McCarthy E. M., Phillips J. A., 3rd A novel mechanism of aberrant pre-mRNA splicing in humans. Hum Mol Genet. 1997 Jun;6(6):909–912. doi: 10.1093/hmg/6.6.909. [DOI] [PubMed] [Google Scholar]
- Daubendiek S. L., Kool E. T. Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles. Nat Biotechnol. 1997 Mar;15(3):273–277. doi: 10.1038/nbt0397-273. [DOI] [PubMed] [Google Scholar]
- Diegelman A. M., Kool E. T. Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes. Nucleic Acids Res. 1998 Jul 1;26(13):3235–3241. doi: 10.1093/nar/26.13.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eul J., Graessmann M., Graessmann A. Experimental evidence for RNA trans-splicing in mammalian cells. EMBO J. 1995 Jul 3;14(13):3226–3235. doi: 10.1002/j.1460-2075.1995.tb07325.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eul J., Graessmann M., Graessmann A. Trans-splicing and alternative-tandem-cis-splicing: two ways by which mammalian cells generate a truncated SV40 T-antigen. Nucleic Acids Res. 1996 May 1;24(9):1653–1661. doi: 10.1093/nar/24.9.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans D., Zorio D., MacMorris M., Winter C. E., Lea K., Blumenthal T. Operons and SL2 trans-splicing exist in nematodes outside the genus Caenorhabditis. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9751–9756. doi: 10.1073/pnas.94.18.9751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallego M. E., Gattoni R., Stévenin J., Marie J., Expert-Bezançon A. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A. EMBO J. 1997 Apr 1;16(7):1772–1784. doi: 10.1093/emboj/16.7.1772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graveley B. R., Maniatis T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell. 1998 Apr;1(5):765–771. doi: 10.1016/s1097-2765(00)80076-3. [DOI] [PubMed] [Google Scholar]
- Gray I. C., Nobile C., Muresu R., Ford S., Spurr N. K. A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24. Genomics. 1995 Jul 20;28(2):328–332. doi: 10.1006/geno.1995.1149. [DOI] [PubMed] [Google Scholar]
- Hertel K. J., Maniatis T. The function of multisite splicing enhancers. Mol Cell. 1998 Feb;1(3):449–455. doi: 10.1016/s1097-2765(00)80045-3. [DOI] [PubMed] [Google Scholar]
- Holstege F. C., Jennings E. G., Wyrick J. J., Lee T. I., Hengartner C. J., Green M. R., Golub T. R., Lander E. S., Young R. A. Dissecting the regulatory circuitry of a eukaryotic genome. Cell. 1998 Nov 25;95(5):717–728. doi: 10.1016/s0092-8674(00)81641-4. [DOI] [PubMed] [Google Scholar]
- Jarrell K. A. Inverse splicing of a group II intron. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8624–8627. doi: 10.1073/pnas.90.18.8624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang K. M., Spritz R. A. RNA splice site selection: evidence for a 5' leads to 3' scanning model. Science. 1983 Jun 24;220(4604):1351–1355. doi: 10.1126/science.6304877. [DOI] [PubMed] [Google Scholar]
- Lewin B. Alternatives for splicing: recognizing the ends of introns. Cell. 1980 Nov;22(2 Pt 2):324–326. doi: 10.1016/0092-8674(80)90340-2. [DOI] [PubMed] [Google Scholar]
- Liu H. X., Zhang M., Krainer A. R. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 1998 Jul 1;12(13):1998–2012. doi: 10.1101/gad.12.13.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsunaga E., Umeno M., Gonzalez F. J. The rat P450 IID subfamily: complete sequences of four closely linked genes and evidence that gene conversions maintained sequence homogeneity at the heme-binding region of the cytochrome P450 active site. J Mol Evol. 1990 Feb;30(2):155–169. doi: 10.1007/BF02099942. [DOI] [PubMed] [Google Scholar]
- Neugebauer K. M., Roth M. B. Transcription units as RNA processing units. Genes Dev. 1997 Dec 15;11(24):3279–3285. doi: 10.1101/gad.11.24.3279. [DOI] [PubMed] [Google Scholar]
- Nigro J. M., Cho K. R., Fearon E. R., Kern S. E., Ruppert J. M., Oliner J. D., Kinzler K. W., Vogelstein B. Scrambled exons. Cell. 1991 Feb 8;64(3):607–613. doi: 10.1016/0092-8674(91)90244-s. [DOI] [PubMed] [Google Scholar]
- Pasman Z., Been M. D., Garcia-Blanco M. A. Exon circularization in mammalian nuclear extracts. RNA. 1996 Jun;2(6):603–610. [PMC free article] [PubMed] [Google Scholar]
- Romkes M., Faletto M. B., Blaisdell J. A., Raucy J. L., Goldstein J. A. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry. 1991 Apr 2;30(13):3247–3255. doi: 10.1021/bi00227a012. [DOI] [PubMed] [Google Scholar]
- Romkes M., Faletto M. B., Blaisdell J. A., Raucy J. L., Goldstein J. A. Cloning and expression of complementary DNAs for multiple members of the human cytochrome PH50IIC subfamily. Biochemistry. 1993 Feb 9;32(5):1390–1390. doi: 10.1021/bi00056a025. [DOI] [PubMed] [Google Scholar]
- Sharp P. A. Speculations on RNA splicing. Cell. 1981 Mar;23(3):643–646. doi: 10.1016/0092-8674(81)90425-6. [DOI] [PubMed] [Google Scholar]
- Stark J. M., Bazett-Jones D. P., Herfort M., Roth M. B. SR proteins are sufficient for exon bridging across an intron. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2163–2168. doi: 10.1073/pnas.95.5.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterner D. A., Carlo T., Berget S. M. Architectural limits on split genes. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15081–15085. doi: 10.1073/pnas.93.26.15081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tacke R., Tohyama M., Ogawa S., Manley J. L. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell. 1998 Apr 3;93(1):139–148. doi: 10.1016/s0092-8674(00)81153-8. [DOI] [PubMed] [Google Scholar]
- Zaphiropoulos P. G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6536–6541. doi: 10.1073/pnas.93.13.6536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaphiropoulos P. G. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol. 1997 Jun;17(6):2985–2993. doi: 10.1128/mcb.17.6.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaphiropoulos P. G., Undén A. B., Rahnama F., Hollingsworth R. E., Toftgård R. PTCH2, a novel human patched gene, undergoing alternative splicing and up-regulated in basal cell carcinomas. Cancer Res. 1999 Feb 15;59(4):787–792. [PubMed] [Google Scholar]
- de Morais S. M., Schweikl H., Blaisdell J., Goldstein J. A. Gene structure and upstream regulatory regions of human CYP2C9 and CYP2C18. Biochem Biophys Res Commun. 1993 Jul 15;194(1):194–201. doi: 10.1006/bbrc.1993.1803. [DOI] [PubMed] [Google Scholar]