Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):2991–3000. doi: 10.1093/nar/27.15.2991

A tale of three fingers: the family of mammalian Sp/XKLF transcription factors.

S Philipsen 1, G Suske 1
PMCID: PMC148522  PMID: 10454592

Abstract

One of the most common regulatory elements is the GC box and the related GT/CACC box, which are widely distributed in promoters, enhancers and locus control regions of housekeeping as well as tissue-specific genes. For long it was generally thought that Sp1 is the major factor acting through these motifs. Recent discoveries have shown that Sp1 is only one of many transcription factors binding and acting through these elements. Sp1 simply represents the first identified and cloned protein of a family of transcription factors characterised by a highly conserved DNA-binding domain consisting of three zinc fingers. Currently this new family of transcription factors has at least 16 different mammalian members. Here, we will summarise and discuss recent advances that have been directed towards understanding the biological role of these proteins.

Full Text

The Full Text of this article is available as a PDF (854.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. P., Crable S. C., Lingrel J. B. Multiple proteins binding to a GATA-E box-GATA motif regulate the erythroid Krüppel-like factor (EKLF) gene. J Biol Chem. 1998 Jun 5;273(23):14347–14354. doi: 10.1074/jbc.273.23.14347. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. P., Kern C. B., Crable S. C., Lingrel J. B. Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Krüppel-like factor: identification of a new multigene family. Mol Cell Biol. 1995 Nov;15(11):5957–5965. doi: 10.1128/mcb.15.11.5957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Apt D., Watts R. M., Suske G., Bernard H. U. High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology. 1996 Oct 1;224(1):281–291. doi: 10.1006/viro.1996.0530. [DOI] [PubMed] [Google Scholar]
  4. Armstrong J. A., Bieker J. J., Emerson B. M. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell. 1998 Oct 2;95(1):93–104. doi: 10.1016/s0092-8674(00)81785-7. [DOI] [PubMed] [Google Scholar]
  5. Asano H., Li X. S., Stamatoyannopoulos G. FKLF, a novel Krüppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol Cell Biol. 1999 May;19(5):3571–3579. doi: 10.1128/mcb.19.5.3571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bieker J. J. Isolation, genomic structure, and expression of human erythroid Krüppel-like factor (EKLF). DNA Cell Biol. 1996 May;15(5):347–352. doi: 10.1089/dna.1996.15.347. [DOI] [PubMed] [Google Scholar]
  7. Bieker J. J., Southwood C. M. The erythroid Krüppel-like factor transactivation domain is a critical component for cell-specific inducibility of a beta-globin promoter. Mol Cell Biol. 1995 Feb;15(2):852–860. doi: 10.1128/mcb.15.2.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Birnbaum M. J., van Wijnen A. J., Odgren P. R., Last T. J., Suske G., Stein G. S., Stein J. L. Sp1 trans-activation of cell cycle regulated promoters is selectively repressed by Sp3. Biochemistry. 1995 Dec 19;34(50):16503–16508. doi: 10.1021/bi00050a034. [DOI] [PubMed] [Google Scholar]
  9. Blok L. J., Grossmann M. E., Perry J. E., Tindall D. J. Characterization of an early growth response gene, which encodes a zinc finger transcription factor, potentially involved in cell cycle regulation. Mol Endocrinol. 1995 Nov;9(11):1610–1620. doi: 10.1210/mend.9.11.8584037. [DOI] [PubMed] [Google Scholar]
  10. Blok L. J., Kumar M. V., Tindall D. J. Isolation of cDNAs that are differentially expressed between androgen-dependent and androgen-independent prostate carcinoma cells using differential display PCR. Prostate. 1995 Apr;26(4):213–224. doi: 10.1002/pros.2990260407. [DOI] [PubMed] [Google Scholar]
  11. Brandeis M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., Cedar H. Sp1 elements protect a CpG island from de novo methylation. Nature. 1994 Sep 29;371(6496):435–438. doi: 10.1038/371435a0. [DOI] [PubMed] [Google Scholar]
  12. Chen X., Bieker J. J. Erythroid Krüppel-like factor (EKLF) contains a multifunctional transcriptional activation domain important for inter- and intramolecular interactions. EMBO J. 1996 Nov 1;15(21):5888–5896. [PMC free article] [PubMed] [Google Scholar]
  13. Conkright M. D., Wani M. A., Anderson K. P., Lingrel J. B. A gene encoding an intestinal-enriched member of the Krüppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Res. 1999 Mar 1;27(5):1263–1270. doi: 10.1093/nar/27.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cook T., Gebelein B., Mesa K., Mladek A., Urrutia R. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem. 1998 Oct 2;273(40):25929–25936. doi: 10.1074/jbc.273.40.25929. [DOI] [PubMed] [Google Scholar]
  15. Courey A. J., Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. doi: 10.1016/0092-8674(88)90144-4. [DOI] [PubMed] [Google Scholar]
  16. Crossley M., Whitelaw E., Perkins A., Williams G., Fujiwara Y., Orkin S. H. Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol Cell Biol. 1996 Apr;16(4):1695–1705. doi: 10.1128/mcb.16.4.1695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Datta P. K., Raychaudhuri P., Bagchi S. Association of p107 with Sp1: genetically separable regions of p107 are involved in regulation of E2F- and Sp1-dependent transcription. Mol Cell Biol. 1995 Oct;15(10):5444–5452. doi: 10.1128/mcb.15.10.5444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dennig J., Beato M., Suske G. An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J. 1996 Oct 15;15(20):5659–5667. [PMC free article] [PubMed] [Google Scholar]
  19. Denver R. J., Pavgi S., Shi Y. B. Thyroid hormone-dependent gene expression program for Xenopus neural development. J Biol Chem. 1997 Mar 28;272(13):8179–8188. doi: 10.1074/jbc.272.13.8179. [DOI] [PubMed] [Google Scholar]
  20. Dynan W. S., Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell. 1983 Nov;35(1):79–87. doi: 10.1016/0092-8674(83)90210-6. [DOI] [PubMed] [Google Scholar]
  21. Döhr O., Abel J. Transforming growth factor-beta1 coregulates mRNA expression of aryl hydrocarbon receptor and cell-cycle-regulating genes in human cancer cell lines. Biochem Biophys Res Commun. 1997 Dec 8;241(1):86–91. doi: 10.1006/bbrc.1997.7773. [DOI] [PubMed] [Google Scholar]
  22. Ellis J., Tan-Un K. C., Harper A., Michalovich D., Yannoutsos N., Philipsen S., Grosveld F. A dominant chromatin-opening activity in 5' hypersensitive site 3 of the human beta-globin locus control region. EMBO J. 1996 Feb 1;15(3):562–568. [PMC free article] [PubMed] [Google Scholar]
  23. Elrod-Erickson M., Rould M. A., Nekludova L., Pabo C. O. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure. 1996 Oct 15;4(10):1171–1180. doi: 10.1016/s0969-2126(96)00125-6. [DOI] [PubMed] [Google Scholar]
  24. Fautsch M. P., Vrabel A., Rickard D., Subramaniam M., Spelsberg T. C., Wieben E. D. Characterization of the mouse TGFbeta-inducible early gene (TIEG): conservation of exon and transcriptional regulatory sequences with evidence of additional transcripts. Mamm Genome. 1998 Oct;9(10):838–842. doi: 10.1007/s003359900878. [DOI] [PubMed] [Google Scholar]
  25. Fautsch M. P., Vrabel A., Subramaniam M., Hefferen T. E., Spelsberg T. C., Wieben E. D. TGFbeta-inducible early gene (TIEG) also codes for early growth response alpha (EGRalpha): evidence of multiple transcripts from alternate promoters. Genomics. 1998 Aug 1;51(3):408–416. doi: 10.1006/geno.1998.5388. [DOI] [PubMed] [Google Scholar]
  26. Feil R., Brocard J., Mascrez B., LeMeur M., Metzger D., Chambon P. Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10887–10890. doi: 10.1073/pnas.93.20.10887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Feng W. C., Southwood C. M., Bieker J. J. Analyses of beta-thalassemia mutant DNA interactions with erythroid Krüppel-like factor (EKLF), an erythroid cell-specific transcription factor. J Biol Chem. 1994 Jan 14;269(2):1493–1500. [PubMed] [Google Scholar]
  28. Gillemans N., Tewari R., Lindeboom F., Rottier R., de Wit T., Wijgerde M., Grosveld F., Philipsen S. Altered DNA-binding specificity mutants of EKLF and Sp1 show that EKLF is an activator of the beta-globin locus control region in vivo. Genes Dev. 1998 Sep 15;12(18):2863–2873. doi: 10.1101/gad.12.18.2863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Grant S. F., Reid D. M., Blake G., Herd R., Fogelman I., Ralston S. H. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet. 1996 Oct;14(2):203–205. doi: 10.1038/ng1096-203. [DOI] [PubMed] [Google Scholar]
  30. Hagen G., Dennig J., Preiss A., Beato M., Suske G. Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3. J Biol Chem. 1995 Oct 20;270(42):24989–24994. doi: 10.1074/jbc.270.42.24989. [DOI] [PubMed] [Google Scholar]
  31. Hagen G., Müller S., Beato M., Suske G. Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. Nucleic Acids Res. 1992 Nov 11;20(21):5519–5525. doi: 10.1093/nar/20.21.5519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hagen G., Müller S., Beato M., Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. doi: 10.1002/j.1460-2075.1994.tb06695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hevroni D., Rattner A., Bundman M., Lederfein D., Gabarah A., Mangelus M., Silverman M. A., Kedar H., Naor C., Kornuc M. Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J Mol Neurosci. 1998 Apr;10(2):75–98. doi: 10.1007/BF02737120. [DOI] [PubMed] [Google Scholar]
  34. Hofbauer L. C., Hicok K. C., Khosla S. Effects of gonadal and adrenal androgens in a novel androgen-responsive human osteoblastic cell line. J Cell Biochem. 1998 Oct 1;71(1):96–108. [PubMed] [Google Scholar]
  35. Imataka H., Nakayama K., Yasumoto K., Mizuno A., Fujii-Kuriyama Y., Hayami M. Cell-specific translational control of transcription factor BTEB expression. The role of an upstream AUG in the 5'-untranslated region. J Biol Chem. 1994 Aug 12;269(32):20668–20673. [PubMed] [Google Scholar]
  36. Imataka H., Sogawa K., Yasumoto K., Kikuchi Y., Sasano K., Kobayashi A., Hayami M., Fujii-Kuriyama Y. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J. 1992 Oct;11(10):3663–3671. doi: 10.1002/j.1460-2075.1992.tb05451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Imhof A., Schuierer M., Werner O., Moser M., Roth C., Bauer R., Buettner R. Transcriptional regulation of the AP-2alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/egr-related zinc finger repressor. Mol Cell Biol. 1999 Jan;19(1):194–204. doi: 10.1128/mcb.19.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Iyer V. R., Eisen M. B., Ross D. T., Schuler G., Moore T., Lee J. C., Trent J. M., Staudt L. M., Hudson J., Jr, Boguski M. S. The transcriptional program in the response of human fibroblasts to serum. Science. 1999 Jan 1;283(5398):83–87. doi: 10.1126/science.283.5398.83. [DOI] [PubMed] [Google Scholar]
  39. Jackson S. P., MacDonald J. J., Lees-Miller S., Tjian R. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell. 1990 Oct 5;63(1):155–165. doi: 10.1016/0092-8674(90)90296-q. [DOI] [PubMed] [Google Scholar]
  40. Jackson S. P., Tjian R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell. 1988 Oct 7;55(1):125–133. doi: 10.1016/0092-8674(88)90015-3. [DOI] [PubMed] [Google Scholar]
  41. Jenkins N. A., Gilbert D. J., Copeland N. G., Gruzglin E., Bieker J. J. Erythroid Krüppel-like transcription factor (Eklf) maps to a region of mouse chromosome 8 syntenic with human chromosome 19. Mamm Genome. 1998 Feb;9(2):174–176. doi: 10.1007/s003359900716. [DOI] [PubMed] [Google Scholar]
  42. Jenkins T. D., Opitz O. G., Okano J., Rustgi A. K. Transactivation of the human keratin 4 and Epstein-Barr virus ED-L2 promoters by gut-enriched Krüppel-like factor. J Biol Chem. 1998 Apr 24;273(17):10747–10754. doi: 10.1074/jbc.273.17.10747. [DOI] [PubMed] [Google Scholar]
  43. Kadonaga J. T., Carner K. R., Masiarz F. R., Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987 Dec 24;51(6):1079–1090. doi: 10.1016/0092-8674(87)90594-0. [DOI] [PubMed] [Google Scholar]
  44. Kalff-Suske M., Kunz J., Grzeschik K. H., Suske G. Human Sp3 transcriptional regulator gene (SP3) maps to chromosome 2q31. Genomics. 1996 Nov 1;37(3):410–412. doi: 10.1006/geno.1996.0582. [DOI] [PubMed] [Google Scholar]
  45. Kalff-Suske M., Kunz J., Grzeschik K. H., Suske G. Human Sp4 transcription factor gene (SP4) maps to chromosome 7p15. Genomics. 1995 Apr 10;26(3):631–633. doi: 10.1016/0888-7543(95)80191-n. [DOI] [PubMed] [Google Scholar]
  46. Karlseder J., Rotheneder H., Wintersberger E. Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol. 1996 Apr;16(4):1659–1667. doi: 10.1128/mcb.16.4.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kennett S. B., Udvadia A. J., Horowitz J. M. Sp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription. Nucleic Acids Res. 1997 Aug 1;25(15):3110–3117. doi: 10.1093/nar/25.15.3110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kim Y., Ratziu V., Choi S. G., Lalazar A., Theiss G., Dang Q., Kim S. J., Friedman S. L. Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem. 1998 Dec 11;273(50):33750–33758. doi: 10.1074/jbc.273.50.33750. [DOI] [PubMed] [Google Scholar]
  49. Kingsley C., Winoto A. Cloning of GT box-binding proteins: a novel Sp1 multigene family regulating T-cell receptor gene expression. Mol Cell Biol. 1992 Oct;12(10):4251–4261. doi: 10.1128/mcb.12.10.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kobayashi A., Sogawa K., Imataka H., Fujii-Kuriyama Y. Analysis of functional domains of a GC box-binding protein, BTEB. J Biochem. 1995 Jan;117(1):91–95. doi: 10.1093/oxfordjournals.jbchem.a124727. [DOI] [PubMed] [Google Scholar]
  51. Koivisto U. M., Palvimo J. J., Jänne O. A., Kontula K. A single-base substitution in the proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of heterozygous familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10526–10530. doi: 10.1073/pnas.91.22.10526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Koritschoner N. P., Bocco J. L., Panzetta-Dutari G. M., Dumur C. I., Flury A., Patrito L. C. A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J Biol Chem. 1997 Apr 4;272(14):9573–9580. doi: 10.1074/jbc.272.14.9573. [DOI] [PubMed] [Google Scholar]
  53. Kozyrev S. V., Hansen L. L., Poltaraus A. B., Domninsky D. A., Kisselev L. L. Structure of the human CpG-island-containing lung Kruppel-like factor (LKLF) gene and its location in chromosome 19p13.11-13 locus. FEBS Lett. 1999 Apr 1;448(1):149–152. doi: 10.1016/s0014-5793(99)00348-8. [DOI] [PubMed] [Google Scholar]
  54. Kuo C. T., Veselits M. L., Barton K. P., Lu M. M., Clendenin C., Leiden J. M. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 1997 Nov 15;11(22):2996–3006. doi: 10.1101/gad.11.22.2996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kuo C. T., Veselits M. L., Leiden J. M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science. 1997 Sep 26;277(5334):1986–1990. doi: 10.1126/science.277.5334.1986. [DOI] [PubMed] [Google Scholar]
  56. Kwon H. S., Kim M. S., Edenberg H. J., Hur M. W. Sp3 and Sp4 can repress transcription by competing with Sp1 for the core cis-elements on the human ADH5/FDH minimal promoter. J Biol Chem. 1999 Jan 1;274(1):20–28. doi: 10.1074/jbc.274.1.20. [DOI] [PubMed] [Google Scholar]
  57. Kühn R., Schwenk F., Aguet M., Rajewsky K. Inducible gene targeting in mice. Science. 1995 Sep 8;269(5229):1427–1429. doi: 10.1126/science.7660125. [DOI] [PubMed] [Google Scholar]
  58. Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
  59. Lim S. K., Bieker J. J., Lin C. S., Costantini F. A shortened life span of EKLF-/- adult erythrocytes, due to a deficiency of beta-globin chains, is ameliorated by human gamma-globin chains. Blood. 1997 Aug 1;90(3):1291–1299. [PubMed] [Google Scholar]
  60. Lin S. Y., Black A. R., Kostic D., Pajovic S., Hoover C. N., Azizkhan J. C. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol. 1996 Apr;16(4):1668–1675. doi: 10.1128/mcb.16.4.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Logie C., Stewart A. F. Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5940–5944. doi: 10.1073/pnas.92.13.5940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Macleod D., Charlton J., Mullins J., Bird A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994 Oct 1;8(19):2282–2292. doi: 10.1101/gad.8.19.2282. [DOI] [PubMed] [Google Scholar]
  63. Marin M., Karis A., Visser P., Grosveld F., Philipsen S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell. 1997 May 16;89(4):619–628. doi: 10.1016/s0092-8674(00)80243-3. [DOI] [PubMed] [Google Scholar]
  64. Matera A. G., Ward D. C. Localization of the human Sp1 transcription factor gene to 12q13 by fluorescence in situ hybridization. Genomics. 1993 Sep;17(3):793–794. doi: 10.1006/geno.1993.1413. [DOI] [PubMed] [Google Scholar]
  65. Matsumoto N., Laub F., Aldabe R., Zhang W., Ramirez F., Yoshida T., Terada M. Cloning the cDNA for a new human zinc finger protein defines a group of closely related Krüppel-like transcription factors. J Biol Chem. 1998 Oct 23;273(43):28229–28237. doi: 10.1074/jbc.273.43.28229. [DOI] [PubMed] [Google Scholar]
  66. Miller I. J., Bieker J. J. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol. 1993 May;13(5):2776–2786. doi: 10.1128/mcb.13.5.2776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Murata Y., Kim H. G., Rogers K. T., Udvadia A. J., Horowitz J. M. Negative regulation of Sp1 trans-activation is correlated with the binding of cellular proteins to the amino terminus of the Sp1 trans-activation domain. J Biol Chem. 1994 Aug 12;269(32):20674–20681. [PubMed] [Google Scholar]
  68. Nuez B., Michalovich D., Bygrave A., Ploemacher R., Grosveld F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995 May 25;375(6529):316–318. doi: 10.1038/375316a0. [DOI] [PubMed] [Google Scholar]
  69. Ohe N., Yamasaki Y., Sogawa K., Inazawa J., Ariyama T., Oshimura M., Fujii-Kuriyama Y. Chromosomal localization and cDNA sequence of human BTEB, a GC box binding protein. Somat Cell Mol Genet. 1993 Sep;19(5):499–503. doi: 10.1007/BF01233255. [DOI] [PubMed] [Google Scholar]
  70. Onyango P., Koritschoner N. P., Patrito L. C., Zenke M., Weith A. Assignment of the gene encoding the core promoter element binding protein (COPEB) to human chromosome 10p15 by somatic hybrid analysis and fluorescence in situ hybridization. Genomics. 1998 Feb 15;48(1):143–144. doi: 10.1006/geno.1997.5124. [DOI] [PubMed] [Google Scholar]
  71. Ouyang L., Chen X., Bieker J. J. Regulation of erythroid Krüppel-like factor (EKLF) transcriptional activity by phosphorylation of a protein kinase casein kinase II site within its interaction domain. J Biol Chem. 1998 Sep 4;273(36):23019–23025. doi: 10.1074/jbc.273.36.23019. [DOI] [PubMed] [Google Scholar]
  72. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  73. Perkins A. C., Gaensler K. M., Orkin S. H. Silencing of human fetal globin expression is impaired in the absence of the adult beta-globin gene activator protein EKLF. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12267–12271. doi: 10.1073/pnas.93.22.12267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Perkins A. C., Sharpe A. H., Orkin S. H. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995 May 25;375(6529):318–322. doi: 10.1038/375318a0. [DOI] [PubMed] [Google Scholar]
  75. Philipsen S., Pruzina S., Grosveld F. The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region. EMBO J. 1993 Mar;12(3):1077–1085. doi: 10.1002/j.1460-2075.1993.tb05749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Ratziu V., Lalazar A., Wong L., Dang Q., Collins C., Shaulian E., Jensen S., Friedman S. L. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9500–9505. doi: 10.1073/pnas.95.16.9500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Ryu S., Zhou S., Ladurner A. G., Tjian R. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature. 1999 Feb 4;397(6718):446–450. doi: 10.1038/17141. [DOI] [PubMed] [Google Scholar]
  78. Saffer J. D., Jackson S. P., Annarella M. B. Developmental expression of Sp1 in the mouse. Mol Cell Biol. 1991 Apr;11(4):2189–2199. doi: 10.1128/mcb.11.4.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Schier A. F., Gehring W. J. Direct homeodomain-DNA interaction in the autoregulation of the fushi tarazu gene. Nature. 1992 Apr 30;356(6372):804–807. doi: 10.1038/356804a0. [DOI] [PubMed] [Google Scholar]
  80. Scohy S., Van Vooren P., Szpirer C., Szpirer J. Assignment1 of Sp genes to rat chromosome bands 7q36 (Sp1), 10q31-->q32.1 (Sp2), 3q24-->q31 (Sp3) and 6q33 (Sp4) and of the SP2 gene to human chromosome bands 17q21.3-->q22 by in situ hybridization. Cytogenet Cell Genet. 1998;81(3-4):273–274. doi: 10.1159/000015044. [DOI] [PubMed] [Google Scholar]
  81. Shields J. M., Christy R. J., Yang V. W. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem. 1996 Aug 16;271(33):20009–20017. doi: 10.1074/jbc.271.33.20009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Shields J. M., Yang V. W. Identification of the DNA sequence that interacts with the gut-enriched Krüppel-like factor. Nucleic Acids Res. 1998 Feb 1;26(3):796–802. doi: 10.1093/nar/26.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Shields J. M., Yang V. W. Two potent nuclear localization signals in the gut-enriched Krüppel-like factor define a subfamily of closely related Krüppel proteins. J Biol Chem. 1997 Jul 18;272(29):18504–18507. doi: 10.1074/jbc.272.29.18504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Sjøttem E., Anderssen S., Johansen T. The promoter activity of long terminal repeats of the HERV-H family of human retrovirus-like elements is critically dependent on Sp1 family proteins interacting with a GC/GT box located immediately 3' to the TATA box. J Virol. 1996 Jan;70(1):188–198. doi: 10.1128/jvi.70.1.188-198.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Sogawa K., Imataka H., Yamasaki Y., Kusume H., Abe H., Fujii-Kuriyama Y. cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res. 1993 Apr 11;21(7):1527–1532. doi: 10.1093/nar/21.7.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Sogawa K., Kikuchi Y., Imataka H., Fujii-Kuriyama Y. Comparison of DNA-binding properties between BTEB and Sp1. J Biochem. 1993 Oct;114(4):605–609. doi: 10.1093/oxfordjournals.jbchem.a124224. [DOI] [PubMed] [Google Scholar]
  87. Southwood C. M., Downs K. M., Bieker J. J. Erythroid Krüppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn. 1996 Jul;206(3):248–259. doi: 10.1002/(SICI)1097-0177(199607)206:3<248::AID-AJA3>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  88. Spadaccini A., Tilbrook P. A., Sarna M. K., Crossley M., Bieker J. J., Klinken S. P. Transcription factor erythroid Krüppel-like factor (EKLF) is essential for the erythropoietin-induced hemoglobin production but not for proliferation, viability, or morphological maturation. J Biol Chem. 1998 Sep 11;273(37):23793–23798. doi: 10.1074/jbc.273.37.23793. [DOI] [PubMed] [Google Scholar]
  89. Strouboulis J., Dillon N., Grosveld F. Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev. 1992 Oct;6(10):1857–1864. doi: 10.1101/gad.6.10.1857. [DOI] [PubMed] [Google Scholar]
  90. Subramaniam M., Harris S. A., Oursler M. J., Rasmussen K., Riggs B. L., Spelsberg T. C. Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res. 1995 Dec 11;23(23):4907–4912. doi: 10.1093/nar/23.23.4907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Subramaniam M., Hefferan T. E., Tau K., Peus D., Pittelkow M., Jalal S., Riggs B. L., Roche P., Spelsberg T. C. Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem. 1998 Feb 1;68(2):226–236. [PubMed] [Google Scholar]
  92. Sun X. M., Neuwirth C., Wade D. P., Knight B. L., Soutar A. K. A mutation (T-45C) in the promoter region of the low-density-lipoprotein (LDL)-receptor gene is associated with a mild clinical phenotype in a patient with heterozygous familial hypercholesterolaemia (FH). Hum Mol Genet. 1995 Nov;4(11):2125–2129. doi: 10.1093/hmg/4.11.2125. [DOI] [PubMed] [Google Scholar]
  93. Supp D. M., Witte D. P., Branford W. W., Smith E. P., Potter S. S. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev Biol. 1996 Jun 15;176(2):284–299. doi: 10.1006/dbio.1996.0134. [DOI] [PubMed] [Google Scholar]
  94. Suzuki T., Yamamoto T., Kurabayashi M., Nagai R., Yazaki Y., Horikoshi M. Isolation and initial characterization of GBF, a novel DNA-binding zinc finger protein that binds to the GC-rich binding sites of the HIV-1 promoter. J Biochem. 1998 Aug;124(2):389–395. doi: 10.1093/oxfordjournals.jbchem.a022124. [DOI] [PubMed] [Google Scholar]
  95. Tachibana I., Imoto M., Adjei P. N., Gores G. J., Subramaniam M., Spelsberg T. C., Urrutia R. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest. 1997 May 15;99(10):2365–2374. doi: 10.1172/JCI119418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Tate P., Skarnes W., Bird A. The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nat Genet. 1996 Feb;12(2):205–208. doi: 10.1038/ng0296-205. [DOI] [PubMed] [Google Scholar]
  97. Tau K. R., Hefferan T. E., Waters K. M., Robinson J. A., Subramaniam M., Riggs B. L., Spelsberg T. C. Estrogen regulation of a transforming growth factor-beta inducible early gene that inhibits deoxyribonucleic acid synthesis in human osteoblasts. Endocrinology. 1998 Mar;139(3):1346–1353. doi: 10.1210/endo.139.3.5830. [DOI] [PubMed] [Google Scholar]
  98. Thiesen H. J., Bach C. Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res. 1990 Jun 11;18(11):3203–3209. doi: 10.1093/nar/18.11.3203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Ton-That H., Kaestner K. H., Shields J. M., Mahatanankoon C. S., Yang V. W. Expression of the gut-enriched Krüppel-like factor gene during development and intestinal tumorigenesis. FEBS Lett. 1997 Dec 15;419(2-3):239–243. doi: 10.1016/s0014-5793(97)01465-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Turner J., Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. EMBO J. 1998 Sep 1;17(17):5129–5140. doi: 10.1093/emboj/17.17.5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Udvadia A. J., Templeton D. J., Horowitz J. M. Functional interactions between the retinoblastoma (Rb) protein and Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3953–3957. doi: 10.1073/pnas.92.9.3953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Wang Y., Michel F. J., Wing A., Simmen F. A., Simmen R. C. Cell-type expression, immunolocalization, and deoxyribonucleic acid-binding activity of basic transcription element binding transcription factor, an Sp-related family member, in porcine endometrium of pregnancy. Biol Reprod. 1997 Oct;57(4):707–714. doi: 10.1095/biolreprod57.4.707. [DOI] [PubMed] [Google Scholar]
  104. Wani M. A., Means R. T., Jr, Lingrel J. B. Loss of LKLF function results in embryonic lethality in mice. Transgenic Res. 1998 Jul;7(4):229–238. doi: 10.1023/a:1008809809843. [DOI] [PubMed] [Google Scholar]
  105. Wijgerde M., Gribnau J., Trimborn T., Nuez B., Philipsen S., Grosveld F., Fraser P. The role of EKLF in human beta-globin gene competition. Genes Dev. 1996 Nov 15;10(22):2894–2902. doi: 10.1101/gad.10.22.2894. [DOI] [PubMed] [Google Scholar]
  106. Xiao J. H., Davidson I., Macchi M., Rosales R., Vigneron M., Staub A., Chambon P. In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer. Genes Dev. 1987 Oct;1(8):794–807. doi: 10.1101/gad.1.8.794. [DOI] [PubMed] [Google Scholar]
  107. Yajima S., Lammers C. H., Lee S. H., Hara Y., Mizuno K., Mouradian M. M. Cloning and characterization of murine glial cell-derived neurotrophic factor inducible transcription factor (MGIF). J Neurosci. 1997 Nov 15;17(22):8657–8666. doi: 10.1523/JNEUROSCI.17-22-08657.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Yet S. F., McA'Nulty M. M., Folta S. C., Yen H. W., Yoshizumi M., Hsieh C. M., Layne M. D., Chin M. T., Wang H., Perrella M. A. Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem. 1998 Jan 9;273(2):1026–1031. doi: 10.1074/jbc.273.2.1026. [DOI] [PubMed] [Google Scholar]
  109. Zhang W., Bieker J. J. Acetylation and modulation of erythroid Krüppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9855–9860. doi: 10.1073/pnas.95.17.9855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Zhang W., Shields J. M., Sogawa K., Fujii-Kuriyama Y., Yang V. W. The gut-enriched Krüppel-like factor suppresses the activity of the CYP1A1 promoter in an Sp1-dependent fashion. J Biol Chem. 1998 Jul 10;273(28):17917–17925. doi: 10.1074/jbc.273.28.17917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. van Ree J. H., Roskrow M. A., Becher A. M., McNall R., Valentine V. A., Jane S. M., Cunningham J. M. The human erythroid-specific transcription factor EKLF localizes to chromosome 19p13.12-p13.13. Genomics. 1997 Feb 1;39(3):393–395. doi: 10.1006/geno.1996.4472. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES