Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1999 Aug 1;27(15):3042–3048. doi: 10.1093/nar/27.15.3042

Regulation of the ribonucleotide reductase small subunit gene by DNA-damaging agents in Dictyostelium discoideum.

P Gaudet 1, A Tsang 1
PMCID: PMC148528  PMID: 10454598

Abstract

In Escherichia coli, yeast and mammalian cells, the genes encoding ribonucleotide reductase, an essential enzyme for de novo DNA synthesis, are up-regulated in response to DNA damaging agents. We have examined the response of the rnrB gene, encoding the small subunit of ribonucleotide reductase in Dictyostelium discoideum, to DNA damaging agents. We show here that the accumulation of rnrB transcript is increased in response to methyl methane sulfonate, 4-nitroquinoline-1-oxide and irradiation with UV-light, but not to the ribonucleotide reductase inhibitor hydroxyurea. This response is rapid, transient and independent of protein synthesis. Moreover, cells from different developmental stages are able to respond to the drug in a similar fashion, regardless of the basal level of expression of the rnrB gene. We have defined the cis -acting elements of the rnrB promoter required for the response to methyl methane sulfonate and 4-nitroquinoline-1-oxide by deletion analysis. Our results indicate that there is one element, named box C, that can confer response to both drugs. Two other boxes, box A and box D, specifically conferred response to methyl methane sulfonate and 4-nitroquinoline-1-oxide, respectively.

Full Text

The Full Text of this article is available as a PDF (300.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama N., Alexander D., Aoki Y., Noda M. Characterization of mutations induced by 300 and 320 nm UV radiation in a rat fibroblast cell line. Mutat Res. 1996 Nov 11;372(1):119–131. doi: 10.1016/S0027-5107(96)00179-0. [DOI] [PubMed] [Google Scholar]
  2. Antoccia A., Palitti F., Raggi T., Catena C., Tanzarella C. Lack of effect of inhibitors of DNA synthesis/repair on the ionizing radiation-induced chromosomal damage in G2 stage of ataxia telangiectasia cells. Int J Radiat Biol. 1994 Sep;66(3):309–317. doi: 10.1080/09553009414551241. [DOI] [PubMed] [Google Scholar]
  3. Barklis E., Pontius B., Barfield K., Lodish H. F. Structure of the promoter of the Dictyostelium discoideum prespore EB4 gene. Mol Cell Biol. 1985 Jun;5(6):1465–1472. doi: 10.1128/mcb.5.6.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bender K., Blattner C., Knebel A., Iordanov M., Herrlich P., Rahmsdorf H. J. UV-induced signal transduction. J Photochem Photobiol B. 1997 Jan;37(1-2):1–17. doi: 10.1016/s1011-1344(96)07459-3. [DOI] [PubMed] [Google Scholar]
  5. Bohr V. A., Okumoto D. S., Hanawalt P. C. Survival of UV-irradiated mammalian cells correlates with efficient DNA repair in an essential gene. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3830–3833. doi: 10.1073/pnas.83.11.3830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonfils C., Greenwood M., Tsang A. Expression and characterization of a Dictyostelium discoideum annexin. Mol Cell Biochem. 1994 Oct 26;139(2):159–166. doi: 10.1007/BF01081739. [DOI] [PubMed] [Google Scholar]
  7. Bronner C. E., Welker D. L., Deering R. A. Mutations affecting sensitivity of the cellular slime mold Dictyostelium discoideum to DNA-damaging agents. Mutat Res. 1992 Sep;274(3):187–200. doi: 10.1016/0921-8777(92)90065-b. [DOI] [PubMed] [Google Scholar]
  8. Cleaver J. E., Charles W. C., McDowell M. L., Sadinski W. J., Mitchell D. L. Overexpression of the XPA repair gene increases resistance to ultraviolet radiation in human cells by selective repair of DNA damage. Cancer Res. 1995 Dec 15;55(24):6152–6160. [PubMed] [Google Scholar]
  9. Collins A., Oates D. J. Hydroxyurea: effects on deoxyribonucleotide pool sizes correlated with effects on DNA repair in mammalian cells. Eur J Biochem. 1987 Dec 1;169(2):299–305. doi: 10.1111/j.1432-1033.1987.tb13612.x. [DOI] [PubMed] [Google Scholar]
  10. Deering R. A. Constitutive and gamma ray modified uptake of labelled precursors into the DNA of Dictyostelium discoideum during development. J Gen Microbiol. 1982 Oct;128(10):2439–2447. doi: 10.1099/00221287-128-10-2439. [DOI] [PubMed] [Google Scholar]
  11. Deering R. A., Michrina C. A. Inhibitors of DNA precursor metabolism in Dictyostelium discoideum. Antimicrob Agents Chemother. 1982 May;21(5):764–769. doi: 10.1128/aac.21.5.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Durston A. J., Vork F. The spatial pattern of DNA synthesis in Dictyostelium discoideum slugs. Exp Cell Res. 1978 Sep;115(2):454–457. doi: 10.1016/0014-4827(78)90308-7. [DOI] [PubMed] [Google Scholar]
  13. Early A. E., Gaskell M. J., Traynor D., Williams J. G. Two distinct populations of prestalk cells within the tip of the migratory Dictyostelium slug with differing fates at culmination. Development. 1993 Jun;118(2):353–362. doi: 10.1242/dev.118.2.353. [DOI] [PubMed] [Google Scholar]
  14. Early A. E., Williams J. G. Two vectors which facilitate gene manipulation and a simplified transformation procedure for Dictyostelium discoideum. Gene. 1987;59(1):99–106. doi: 10.1016/0378-1119(87)90270-8. [DOI] [PubMed] [Google Scholar]
  15. Elledge S. J., Davis R. W. DNA damage induction of ribonucleotide reductase. Mol Cell Biol. 1989 Nov;9(11):4932–4940. doi: 10.1128/mcb.9.11.4932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Elledge S. J., Davis R. W. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev. 1990 May;4(5):740–751. doi: 10.1101/gad.4.5.740. [DOI] [PubMed] [Google Scholar]
  17. Elledge S. J., Zhou Z., Allen J. B., Navas T. A. DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays. 1993 May;15(5):333–339. doi: 10.1002/bies.950150507. [DOI] [PubMed] [Google Scholar]
  18. Esch R. K., Firtel R. A. cAMP and cell sorting control the spatial expression of a developmentally essential cell-type-specific ras gene in Dictyostelium. Genes Dev. 1991 Jan;5(1):9–21. doi: 10.1101/gad.5.1.9. [DOI] [PubMed] [Google Scholar]
  19. Fan H., Huang A., Villegas C., Wright J. A. The R1 component of mammalian ribonucleotide reductase has malignancy-suppressing activity as demonstrated by gene transfer experiments. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13181–13186. doi: 10.1073/pnas.94.24.13181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fan H., Villegas C., Wright J. A. Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14036–14040. doi: 10.1073/pnas.93.24.14036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Filatov D., Björklund S., Johansson E., Thelander L. Induction of the mouse ribonucleotide reductase R1 and R2 genes in response to DNA damage by UV light. J Biol Chem. 1996 Sep 27;271(39):23698–23704. doi: 10.1074/jbc.271.39.23698. [DOI] [PubMed] [Google Scholar]
  22. Franke J., Podgorski G. J., Kessin R. H. The expression of two transcripts of the phosphodiesterase gene during the development of Dictyostelium discoideum. Dev Biol. 1987 Dec;124(2):504–511. doi: 10.1016/0012-1606(87)90503-3. [DOI] [PubMed] [Google Scholar]
  23. Freeland T. M., Guyer R. B., Ling A. Z., Deering R. A. Apurinic/apyrimidinic (AP) endonuclease from Dictyostelium discoideum: cloning, nucleotide sequence and induction by sublethal levels of DNA damaging agents. Nucleic Acids Res. 1996 May 15;24(10):1950–1953. doi: 10.1093/nar/24.10.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grant C. E., Bain G., Tsang A. The molecular basis for alternative splicing of the CABP1 transcripts in Dictyostelium discoideum. Nucleic Acids Res. 1990 Sep 25;18(18):5457–5463. doi: 10.1093/nar/18.18.5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Grant C. E., Tsang A. Cloning and characterization of cDNAs encoding a novel cyclic AMP-binding protein in Dictyostelium discoideum. Gene. 1990 Dec 15;96(2):213–218. doi: 10.1016/0378-1119(90)90255-p. [DOI] [PubMed] [Google Scholar]
  26. Haberstroh L., Galindo J., Firtel R. A. Developmental and spatial regulation of a Dictyostelium prespore gene: cis-acting elements and a cAMP-induced, developmentally regulated DNA binding activity. Development. 1991 Nov;113(3):947–958. doi: 10.1242/dev.113.3.947. [DOI] [PubMed] [Google Scholar]
  27. Hongslo J. K., Brunborg G., Steffensen I. L., Holme J. A. Paracetamol inhibits UV-induced DNA repair in resting human mononuclear blood cells in vitro. Mutagenesis. 1993 Sep;8(5):423–429. doi: 10.1093/mutage/8.5.423. [DOI] [PubMed] [Google Scholar]
  28. Huang M., Elledge S. J. Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Oct;17(10):6105–6113. doi: 10.1128/mcb.17.10.6105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hurd H. K., Roberts J. W. Upstream regulatory sequences of the yeast RNR2 gene include a repression sequence and an activation site that binds the RAP1 protein. Mol Cell Biol. 1989 Dec;9(12):5359–5372. doi: 10.1128/mcb.9.12.5359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Johnston L. H., Johnson A. L. The DNA repair genes RAD54 and UNG1 are cell cycle regulated in budding yeast but MCB promoter elements have no essential role in the DNA damage response. Nucleic Acids Res. 1995 Jun 25;23(12):2147–2152. doi: 10.1093/nar/23.12.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Johnston L. H., White J. H., Johnson A. L., Lucchini G., Plevani P. The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucleic Acids Res. 1987 Jul 10;15(13):5017–5030. doi: 10.1093/nar/15.13.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jones J. S., Prakash L., Prakash S. Regulated expression of the Saccharomyces cerevisiae DNA repair gene RAD7 in response to DNA damage and during sporulation. Nucleic Acids Res. 1990 Jun 11;18(11):3281–3285. doi: 10.1093/nar/18.11.3281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jones J. S., Prakash L. Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD18 increase in UV irradiated cells and during meiosis but not during the mitotic cell cycle. Nucleic Acids Res. 1991 Feb 25;19(4):893–898. doi: 10.1093/nar/19.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lommel L., Hanawalt P. C. Increased UV resistance of a xeroderma pigmentosum revertant cell line is correlated with selective repair of the transcribed strand of an expressed gene. Mol Cell Biol. 1993 Feb;13(2):970–976. doi: 10.1128/mcb.13.2.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. MOROWITZ H. J. Absorption effects in volume irradiation of microorganisms. Science. 1950 Mar 3;111(2879):229–229. doi: 10.1126/science.111.2879.229-a. [DOI] [PubMed] [Google Scholar]
  36. Madura K., Prakash S., Prakash L. Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res. 1990 Feb 25;18(4):771–778. doi: 10.1093/nar/18.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Madura K., Prakash S. Transcript levels of the Saccharomyes cerevisiae DNA repair gene RAD23 increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle. Nucleic Acids Res. 1990 Aug 25;18(16):4737–4742. doi: 10.1093/nar/18.16.4737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mauldin S. K., Freeland T. M., Deering R. A. Differential repair of UV damage in a developmentally regulated gene of Dictyostelium discoideum. Mutat Res. 1994 Mar;314(2):187–198. doi: 10.1016/0921-8777(94)90082-5. [DOI] [PubMed] [Google Scholar]
  39. McClarty G. A., Chan A. K., Choy B. K., Thelander L., Wright J. A. Molecular mechanisms responsible for the drug-induced posttranscriptional modulation of ribonucleotide reductase levels in a hydroxyurea-resistant mouse L cell line. Biochemistry. 1988 Sep 20;27(19):7524–7531. doi: 10.1021/bi00419a052. [DOI] [PubMed] [Google Scholar]
  40. Pears C. J., Williams J. G. Identification of a DNA sequence element required for efficient expression of a developmentally regulated and cAMP-inducible gene of Dictyostelium discoideum. EMBO J. 1987 Jan;6(1):195–200. doi: 10.1002/j.1460-2075.1987.tb04738.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Petersen L. N., Stevnsner T., Bohr V. A. DNA repair in a UV resistant Chinese hamster ovary cell line. Carcinogenesis. 1995 Dec;16(12):3075–3081. doi: 10.1093/carcin/16.12.3075. [DOI] [PubMed] [Google Scholar]
  42. Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem. 1988;57:349–374. doi: 10.1146/annurev.bi.57.070188.002025. [DOI] [PubMed] [Google Scholar]
  43. Sebastian J., Kraus B., Sancar G. B. Expression of the yeast PHR1 gene is induced by DNA-damaging agents. Mol Cell Biol. 1990 Sep;10(9):4630–4637. doi: 10.1128/mcb.10.9.4630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shaulsky G., Loomis W. F. Mitochondrial DNA replication but no nuclear DNA replication during development of Dictyostelium. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5660–5663. doi: 10.1073/pnas.92.12.5660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shinohara A., Ogawa H., Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992 May 1;69(3):457–470. doi: 10.1016/0092-8674(92)90447-k. [DOI] [PubMed] [Google Scholar]
  46. Szekeres T., Fritzer-Szekeres M., Elford H. L. The enzyme ribonucleotide reductase: target for antitumor and anti-HIV therapy. Crit Rev Clin Lab Sci. 1997;34(6):503–528. doi: 10.3109/10408369709006424. [DOI] [PubMed] [Google Scholar]
  47. Tsang A., Bonfils C., Czaika G., Shtevi A., Grant C. A prespore-specific gene of Dictyostelium discoideum encodes the small subunit of ribonucleotide reductase. Biochim Biophys Acta. 1996 Nov 11;1309(1-2):100–108. doi: 10.1016/s0167-4781(96)00109-1. [DOI] [PubMed] [Google Scholar]
  48. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Welker D. L., Deering R. A. Interactions between radiation-sensitive mutations in double-mutant haploids of Dictyostelium discoideum. Mol Gen Genet. 1979 Jan 2;167(3):265–270. doi: 10.1007/BF00267418. [DOI] [PubMed] [Google Scholar]
  50. Yu S. L., Lee S. K., Alexander H., Alexander S. Rapid changes of nucleotide excision repair gene expression following UV-irradiation and cisplatin treatment of Dictyostelium discoideum. Nucleic Acids Res. 1998 Jul 15;26(14):3397–3403. doi: 10.1093/nar/26.14.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zada-Hames I. M., Ashworth J. M. The cell cycle and its relationship to development in Dictyostelium discoideum. Dev Biol. 1978 Apr;63(2):307–320. doi: 10.1016/0012-1606(78)90136-7. [DOI] [PubMed] [Google Scholar]
  52. Zhou B. S., Hsu N. Y., Pan B. C., Doroshow J. H., Yen Y. Overexpression of ribonucleotide reductase in transfected human KB cells increases their resistance to hydroxyurea: M2 but not M1 is sufficient to increase resistance to hydroxyurea in transfected cells. Cancer Res. 1995 Mar 15;55(6):1328–1333. [PubMed] [Google Scholar]
  53. Zimmerman W., Weijer C. J. Analysis of cell cycle progression during the development of Dictyostelium and its relationship to differentiation. Dev Biol. 1993 Nov;160(1):178–185. doi: 10.1006/dbio.1993.1296. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES