Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Oct;113(2):564–568. doi: 10.1111/j.1476-5381.1994.tb17026.x

Reduction by NG-nitro-L-arginine of H2O2-induced endothelial cell injury.

S Shimizu 1, M Nomoto 1, T Yamamoto 1, K Momose 1
PMCID: PMC1510094  PMID: 7530574

Abstract

1. The effects of three analogues of NG-nitro-L-arginine (L-NOARG) and NG-monomethyl-L-arginine (L-NMMA), inhibitors of nitric oxide (NO) synthase, on hydrogen peroxide (H2O2)-induced endothelial cell injury were studied. 2. Endothelial cell injury was assessed by measuring the release of intracellular lactate dehydrogenase (LDH) and 51Cr. 3. Addition of H2O2 (250-1,000 microM) to endothelial cells induced the release of LDH dose-dependently. The release of LDH was reduced by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME, 10(-4)-4 x 10(-3) M), L-NOARG (10(-4)-4 x 10(-3) M) and NG-nitro-L-arginine benzyl ester (L-NABE, 10(-4)-4 x 10(-3) M), inhibitors of NO synthase. 4. L-NOARG analogues also reduced H2O2-induced 51Cr release from endothelial cells, while L-NMMA had no effect. 5. The protective effect of L-NAME was not reversed by addition of L-arginine (L-Arg, 1-10 mM). 6. Both L-NAME and L-NMMA completely inhibited L-Arg metabolism to L-citrulline coupled with NO synthesis. 7. These findings suggest that L-NOARG analogues but not L-NMMA reduced H2O2-induced endothelial cell injury, and that these effects may not be related to inhibition of NO production.

Full text

PDF
566

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike T., Yoshida M., Miyamoto Y., Sato K., Kohno M., Sasamoto K., Miyazaki K., Ueda S., Maeda H. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry. 1993 Jan 26;32(3):827–832. doi: 10.1021/bi00054a013. [DOI] [PubMed] [Google Scholar]
  2. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brawn K., Fridovich I. DNA strand scission by enzymically generated oxygen radicals. Arch Biochem Biophys. 1981 Feb;206(2):414–419. doi: 10.1016/0003-9861(81)90108-9. [DOI] [PubMed] [Google Scholar]
  4. Bus J. S., Aust S. D., Gibson J. E. Superoxide- and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun. 1974 Jun 4;58(3):749–755. doi: 10.1016/s0006-291x(74)80481-x. [DOI] [PubMed] [Google Scholar]
  5. Dawson D. A., Kusumoto K., Graham D. I., McCulloch J., Macrae I. M. Inhibition of nitric oxide synthesis does not reduce infarct volume in a rat model of focal cerebral ischaemia. Neurosci Lett. 1992 Aug 17;142(2):151–154. doi: 10.1016/0304-3940(92)90361-a. [DOI] [PubMed] [Google Scholar]
  6. Fantone J. C., Ward P. A. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol. 1982 Jun;107(3):395–418. [PMC free article] [PubMed] [Google Scholar]
  7. Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
  8. Frew J. D., Paisley K., Martin W. Selective inhibition of basal but not agonist-stimulated activity of nitric oxide in rat aorta by NG-monomethyl-L-arginine. Br J Pharmacol. 1993 Nov;110(3):1003–1008. doi: 10.1111/j.1476-5381.1993.tb13913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Förstermann U., Pollock J. S., Schmidt H. H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1788–1792. doi: 10.1073/pnas.88.5.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Granger D. N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol. 1988 Dec;255(6 Pt 2):H1269–H1275. doi: 10.1152/ajpheart.1988.255.6.H1269. [DOI] [PubMed] [Google Scholar]
  11. Heinzel B., John M., Klatt P., Böhme E., Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992 Feb 1;281(Pt 3):627–630. doi: 10.1042/bj2810627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henson P. M., Johnston R. B., Jr Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J Clin Invest. 1987 Mar;79(3):669–674. doi: 10.1172/JCI112869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hogg N., Darley-Usmar V. M., Wilson M. T., Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J. 1992 Jan 15;281(Pt 2):419–424. doi: 10.1042/bj2810419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishii K., Chang B., Kerwin J. F., Jr, Huang Z. J., Murad F. N omega-nitro-L-arginine: a potent inhibitor of endothelium-derived relaxing factor formation. Eur J Pharmacol. 1990 Feb 6;176(2):219–223. doi: 10.1016/0014-2999(90)90531-a. [DOI] [PubMed] [Google Scholar]
  15. Matheis G., Sherman M. P., Buckberg G. D., Haybron D. M., Young H. H., Ignarro L. J. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol. 1992 Feb;262(2 Pt 2):H616–H620. doi: 10.1152/ajpheart.1992.262.2.H616. [DOI] [PubMed] [Google Scholar]
  16. Mayer B., John M., Heinzel B., Werner E. R., Wachter H., Schultz G., Böhme E. Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase. FEBS Lett. 1991 Aug 19;288(1-2):187–191. doi: 10.1016/0014-5793(91)81031-3. [DOI] [PubMed] [Google Scholar]
  17. Mayer B., Schmid M., Klatt P., Schmidt K. Reversible inactivation of endothelial nitric oxide synthase by NG-nitro-L-arginine. FEBS Lett. 1993 Oct 25;333(1-2):203–206. doi: 10.1016/0014-5793(93)80405-j. [DOI] [PubMed] [Google Scholar]
  18. Mayer B., Schmidt K., Humbert P., Böhme E. Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylyl cyclase. Biochem Biophys Res Commun. 1989 Oct 31;164(2):678–685. doi: 10.1016/0006-291x(89)91513-1. [DOI] [PubMed] [Google Scholar]
  19. McGuire P. G., Orkin R. W. Isolation of rat aortic endothelial cells by primary explant techniques and their phenotypic modulation by defined substrata. Lab Invest. 1987 Jul;57(1):94–105. [PubMed] [Google Scholar]
  20. Noronha-Dutra A. A., Epperlein M. M., Woolf N. Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing. FEBS Lett. 1993 Apr 19;321(1):59–62. doi: 10.1016/0014-5793(93)80621-z. [DOI] [PubMed] [Google Scholar]
  21. Olken N. M., Marletta M. A. NG-methyl-L-arginine functions as an alternate substrate and mechanism-based inhibitor of nitric oxide synthase. Biochemistry. 1993 Sep 21;32(37):9677–9685. doi: 10.1021/bi00088a020. [DOI] [PubMed] [Google Scholar]
  22. Patel V. C., Yellon D. M., Singh K. J., Neild G. H., Woolfson R. G. Inhibition of nitric oxide limits infarct size in the in situ rabbit heart. Biochem Biophys Res Commun. 1993 Jul 15;194(1):234–238. doi: 10.1006/bbrc.1993.1809. [DOI] [PubMed] [Google Scholar]
  23. Pollock J. S., Förstermann U., Mitchell J. A., Warner T. D., Schmidt H. H., Nakane M., Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10480–10484. doi: 10.1073/pnas.88.23.10480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmidt H. H., Pollock J. S., Nakane M., Förstermann U., Murad F. Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium. 1992 Jun-Jul;13(6-7):427–434. doi: 10.1016/0143-4160(92)90055-w. [DOI] [PubMed] [Google Scholar]
  26. Shasby D. M., Shasby S. S. Effects of calcium on transendothelial albumin transfer and electrical resistance. J Appl Physiol (1985) 1986 Jan;60(1):71–79. doi: 10.1152/jappl.1986.60.1.71. [DOI] [PubMed] [Google Scholar]
  27. Shimizu S., Yamamoto T., Momose K. Inhibition by methylene blue of the L-arginine metabolism to L-citrulline coupled with nitric oxide synthesis in cultured endothelial cells. Res Commun Chem Pathol Pharmacol. 1993 Oct;82(1):35–48. [PubMed] [Google Scholar]
  28. Spragg R. G. DNA strand break formation following exposure of bovine pulmonary artery and aortic endothelial cells to reactive oxygen products. Am J Respir Cell Mol Biol. 1991 Jan;4(1):4–10. doi: 10.1165/ajrcmb/4.1.4. [DOI] [PubMed] [Google Scholar]
  29. Thies R. L., Autor A. P. Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose) polymerase activation causing NAD depletion and altered energy balance. Arch Biochem Biophys. 1991 May 1;286(2):353–363. doi: 10.1016/0003-9861(91)90051-j. [DOI] [PubMed] [Google Scholar]
  30. Todoki K., Okabe E., Kiyose T., Sekishita T., Ito H. Oxygen free radical-mediated selective endothelial dysfunction in isolated coronary artery. Am J Physiol. 1992 Mar;262(3 Pt 2):H806–H812. doi: 10.1152/ajpheart.1992.262.3.H806. [DOI] [PubMed] [Google Scholar]
  31. Zembowicz A., Hatchett R. J., Jakubowski A. M., Gryglewski R. J. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta. Br J Pharmacol. 1993 Sep;110(1):151–158. doi: 10.1111/j.1476-5381.1993.tb13785.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES