Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Apr;114(7):1454–1458. doi: 10.1111/j.1476-5381.1995.tb13369.x

Increase by NG-nitro-L-arginine methyl ester (L-NAME) of resistance to venous return in rats.

Y X Wang 1, S L Lim 1, C C Pang 1
PMCID: PMC1510283  PMID: 7541693

Abstract

1. The effects of the nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on mean circulatory filling pressure (MCFP), total peripheral resistance (TPR), cardiac output (CO) and resistance to venous return (Rv) were studied in rats. 2. In conscious, unrestrained rats, L-NAME (0.5-16 mg kg-1) dose-dependently increased mean arterial pressure (MAP) but not MCFP, an inverse index of venous compliance, either in the absence or presence of the ganglionic blocker mecamylamine (10 mg kg-1). 3. In pentobarbitone-anaesthetized rats, L-NAME (2, 4, 8 mg kg-1) increased MAP and reduced CO in a dose-related manner but did not change MCFP, TPR (+84, +140 and +192%) as well as Rv (+62, +72, +110%) were dose-dependently increased by L-NAME. 4. Our results show that L-NAME reduces CO by increasing arterial as well as venous resistances. L-NAME does not affect MCFP.

Full text

PDF
1457

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Gross S. S., Griffith O. W., Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun. 1989 Apr 28;160(2):881–886. doi: 10.1016/0006-291x(89)92517-5. [DOI] [PubMed] [Google Scholar]
  2. Bower E. A., Law A. C. The effects of N omega-nitro-L-arginine methyl ester, sodium nitroprusside and noradrenaline on venous return in the anaesthetized cat. Br J Pharmacol. 1993 Apr;108(4):933–940. doi: 10.1111/j.1476-5381.1993.tb13489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chyu K. Y., Guth P. H., Ross G. Effect of N omega-nitro-L-arginine methyl ester on arterial pressure and on vasodilator and vasoconstrictor responses: influence of initial vascular tone. Eur J Pharmacol. 1992 Mar 3;212(2-3):159–164. doi: 10.1016/0014-2999(92)90324-w. [DOI] [PubMed] [Google Scholar]
  4. Elmore J. R., Gloviczki P., Brockbank K. G., Miller V. M. Functional changes in canine saphenous veins after cryopreservation. Int Angiol. 1992 Jan-Mar;11(1):26–35. [PubMed] [Google Scholar]
  5. Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. Br J Pharmacol. 1990 Nov;101(3):625–631. doi: 10.1111/j.1476-5381.1990.tb14131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glick M. R., Gehman J. D., Gascho J. A. Endothelium-derived nitric oxide reduces baseline venous tone in awake instrumented rats. Am J Physiol. 1993 Jul;265(1 Pt 2):H47–H51. doi: 10.1152/ajpheart.1993.265.1.H47. [DOI] [PubMed] [Google Scholar]
  7. Gold M. E., Wood K. S., Byrns R. E., Fukuto J., Ignarro L. J. NG-methyl-L-arginine causes endothelium-dependent contraction and inhibition of cyclic GMP formation in artery and vein. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4430–4434. doi: 10.1073/pnas.87.12.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herity N. A., Allen J. D., Silke B., Adgey A. A. Comparison of the ability of nicardipine, theophylline and zaprinast to restore cardiovascular haemodynamics following inhibition of nitric oxide synthesis. Br J Pharmacol. 1994 Jun;112(2):423–428. doi: 10.1111/j.1476-5381.1994.tb13089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lacolley P. J., Lewis S. J., Brody M. J. Role of sympathetic nerve activity in the generation of vascular nitric oxide in urethane-anesthetized rats. Hypertension. 1991 Jun;17(6 Pt 2):881–887. doi: 10.1161/01.hyp.17.6.881. [DOI] [PubMed] [Google Scholar]
  10. Martin G. R., Bolofo M. L., Giles H. Inhibition of endothelium-dependent vasorelaxation by arginine analogues: a pharmacological analysis of agonist and tissue dependence. Br J Pharmacol. 1992 Mar;105(3):643–652. doi: 10.1111/j.1476-5381.1992.tb09033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller V. M. Selective production of endothelium-derived nitric oxide in canine femoral veins. Am J Physiol. 1991 Sep;261(3 Pt 2):H677–H682. doi: 10.1152/ajpheart.1991.261.3.H677. [DOI] [PubMed] [Google Scholar]
  12. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  13. Nagao T., Vanhoutte P. M. Hyperpolarization contributes to endothelium-dependent relaxations to acetylcholine in femoral veins of rats. Am J Physiol. 1991 Oct;261(4 Pt 2):H1034–H1037. doi: 10.1152/ajpheart.1991.261.4.H1034. [DOI] [PubMed] [Google Scholar]
  14. Pang C. C. Effect of vasopressin antagonist and saralasin on regional blood flow following hemorrhage. Am J Physiol. 1983 Nov;245(5 Pt 1):H749–H755. doi: 10.1152/ajpheart.1983.245.5.H749. [DOI] [PubMed] [Google Scholar]
  15. Pang C. C., Tabrizchi R. The effects of noradrenaline, B-HT 920, methoxamine, angiotensin II and vasopressin on mean circulatory filling pressure in conscious rats. Br J Pharmacol. 1986 Oct;89(2):389–394. doi: 10.1111/j.1476-5381.1986.tb10272.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pawloski J. R., Chapnick B. M. LTD4 and bradykinin evoke endothelium-dependent relaxation of the renal vein: dissimilar mechanisms. Am J Physiol. 1991 Jul;261(1 Pt 2):H88–H95. doi: 10.1152/ajpheart.1991.261.1.H88. [DOI] [PubMed] [Google Scholar]
  17. Pegoraro A. A., Carretero O. A., Sigmon D. H., Beierwaltes W. H. Sympathetic modulation of endothelium-derived relaxing factor. Hypertension. 1992 Jun;19(6 Pt 2):643–647. doi: 10.1161/01.hyp.19.6.643. [DOI] [PubMed] [Google Scholar]
  18. Pucci M. L., Lin L., Nasjletti A. Pressor and renal vasoconstrictor effects of NG-nitro-L-arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin, prostanoids and vasopressin. J Pharmacol Exp Ther. 1992 Apr;261(1):240–245. [PubMed] [Google Scholar]
  19. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rothe C. F. Mean circulatory filling pressure: its meaning and measurement. J Appl Physiol (1985) 1993 Feb;74(2):499–509. doi: 10.1152/jappl.1993.74.2.499. [DOI] [PubMed] [Google Scholar]
  22. Schwarzacher S., Weidinger F., Schemper M., Raberger G. Blockade of endothelium-derived relaxing factor synthesis with NG-nitro-L-arginine methyl ester leads to enhanced venous reactivity in vivo. Eur J Pharmacol. 1992 Dec 15;229(2-3):253–258. doi: 10.1016/0014-2999(92)90563-j. [DOI] [PubMed] [Google Scholar]
  23. Tabrizchi R., King K. A., Pang C. C. Direct and indirect effects of angiotensin II on venous tone in conscious rats. Eur J Pharmacol. 1992 Aug 14;219(1):141–145. doi: 10.1016/0014-2999(92)90592-r. [DOI] [PubMed] [Google Scholar]
  24. Tabrizchi R., Lim S. L., Pang C. C. Possible equilibration of portal venous and central venous pressures during circulatory arrest. Am J Physiol. 1993 Jan;264(1 Pt 2):H259–H261. doi: 10.1152/ajpheart.1993.264.1.H259. [DOI] [PubMed] [Google Scholar]
  25. Tabrizchi R., Pang C. C. Are angiotensin receptors in vascular smooth muscles a homogeneous population? Eur J Pharmacol. 1987 Oct 27;142(3):359–366. doi: 10.1016/0014-2999(87)90074-4. [DOI] [PubMed] [Google Scholar]
  26. Tabrizchi R., Pang C. C. Effects of drugs on body venous tone, as reflected by mean circulatory filling pressure. Cardiovasc Res. 1992 May;26(5):443–448. doi: 10.1093/cvr/26.5.443. [DOI] [PubMed] [Google Scholar]
  27. Toda N., Kitamura Y., Okamura T. Neural mechanism of hypertension by nitric oxide synthase inhibitor in dogs. Hypertension. 1993 Jan;21(1):3–8. doi: 10.1161/01.hyp.21.1.3. [DOI] [PubMed] [Google Scholar]
  28. Vargas H. M., Ignarro L. J., Chaudhuri G. Physiological release of nitric oxide is dependent on the level of vascular tone. Eur J Pharmacol. 1990 Nov 13;190(3):393–397. doi: 10.1016/0014-2999(90)94204-b. [DOI] [PubMed] [Google Scholar]
  29. Wang Y. X., Abdelrahman A., Pang C. C. Selective inhibition of pressor and haemodynamic effects of NG-nitro-L-arginine by halothane. J Cardiovasc Pharmacol. 1993 Oct;22(4):571–578. [PubMed] [Google Scholar]
  30. Wang Y. X., Pang C. C. Possible dependence of pressor and heart rate effects of NG-nitro-L-arginine on autonomic nerve activity. Br J Pharmacol. 1991 Aug;103(4):2004–2008. doi: 10.1111/j.1476-5381.1991.tb12367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang Y. X., Poon C. I., Pang C. C. In vitro and ex vivo inhibitory effects of L- and D-enantiomers of NG-nitro-arginine on endothelium-dependent relaxation of rat aorta. J Pharmacol Exp Ther. 1993 Apr;265(1):112–119. [PubMed] [Google Scholar]
  32. Wang Y. X., Poon C. I., Pang C. C. Vascular pharmacodynamics of NG-nitro-L-arginine methyl ester in vitro and in vivo. J Pharmacol Exp Ther. 1993 Dec;267(3):1091–1099. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES