Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Dec;113(4):1269–1274. doi: 10.1111/j.1476-5381.1994.tb17135.x

Effect of type A and B monoamine oxidase selective inhibition by Ro 41-1049 and Ro 19-6327 on dopamine outflow in rat kidney slices.

M Pestana 1, P Soares-da-Silva 1
PMCID: PMC1510508  PMID: 7889283

Abstract

1. The influence of pargyline and of selective inhibitors of type A and B monoamine oxidase (MAO), Ro 41-1049 and Ro 19-6327 respectively, on the outflow of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) in slices of rat renal cortex loaded with exogenous L-3,4-dihydroxyphenylalanine (L-DOPA) was examined. Dopamine and DOPAC in the tissues and in the effluent were assayed by means of h.p.l.c. with electrochemical detection. 2. The levels of newly-formed dopamine and DOPAC in the perifusate decreased progressively with time. In control conditions, DOPAC/dopamine ratios in the perifusate were 3 to 5 fold those in the tissue and were found to increase progressively with time. The addition of pargyline (100 microM), produced a marked decrease in the outflow levels of DOPAC (45 to 54% reduction) and significantly increased the levels of dopamine in the effluent (102 to 158% increase); DOPAC/dopamine ratios in the perifusate remained stable throughout the perifusion and were similar to those found in the tissues. The addition of the MAO-A inhibitor Ro 41-1049 to the perifusion fluid also significantly decreased DOPAC outflow (41% to 54% reduction) and increased dopamine outflow (19% to 80% increase). In the presence of Ro 41-1049 DOPAC/dopamine ratios in the perifusate were lower (P < 0.01) than in controls; in contrast with the effect of pargyline, this ratio was found to increase (P < 0.01) throughout the perifusion period. Ro 19-6327 did not reduce the outflow of DOPAC, but significantly increased (by 40-60%) that of dopamine.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aperia A., Bertorello A., Seri I. Dopamine causes inhibition of Na+-K+-ATPase activity in rat proximal convoluted tubule segments. Am J Physiol. 1987 Jan;252(1 Pt 2):F39–F45. doi: 10.1152/ajprenal.1987.252.1.F39. [DOI] [PubMed] [Google Scholar]
  2. Baines A. D., Chan W. Production of urine free dopamine from DOPA; a micropuncture study. Life Sci. 1980 Jan 28;26(4):253–259. doi: 10.1016/0024-3205(80)90334-3. [DOI] [PubMed] [Google Scholar]
  3. Caramona M. M., Soares-da-Silva P. Evidence for an extraneuronal location of monoamine oxidase in renal tissues. Naunyn Schmiedebergs Arch Pharmacol. 1990 May;341(5):411–413. doi: 10.1007/BF00176332. [DOI] [PubMed] [Google Scholar]
  4. Chan Y. L. Cellular mechanisms of renal tubular transport of I-dopa and its derivatives in the rat: microperfusion studies. J Pharmacol Exp Ther. 1976 Oct;199(1):17–24. [PubMed] [Google Scholar]
  5. Da Prada M., Kettler R., Keller H. H., Cesura A. M., Richards J. G., Saura Marti J., Muggli-Maniglio D., Wyss P. C., Kyburz E., Imhof R. From moclobemide to Ro 19-6327 and Ro 41-1049: the development of a new class of reversible, selective MAO-A and MAO-B inhibitors. J Neural Transm Suppl. 1990;29:279–292. doi: 10.1007/978-3-7091-9050-0_27. [DOI] [PubMed] [Google Scholar]
  6. Felder C. C., Campbell T., Albrecht F., Jose P. A. Dopamine inhibits Na(+)-H+ exchanger activity in renal BBMV by stimulation of adenylate cyclase. Am J Physiol. 1990 Aug;259(2 Pt 2):F297–F303. doi: 10.1152/ajprenal.1990.259.2.F297. [DOI] [PubMed] [Google Scholar]
  7. Fernandes M. H., Pestana M., Soares-da-Silva P. Deamination of newly-formed dopamine in rat renal tissues. Br J Pharmacol. 1991 Mar;102(3):778–782. doi: 10.1111/j.1476-5381.1991.tb12250.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernandes M. H., Soares-da-Silva P. Effects of MAO-A and MAO-B selective inhibitors Ro 41-1049 and Ro 19-6327 on the deamination of newly formed dopamine in the rat kidney. J Pharmacol Exp Ther. 1990 Dec;255(3):1309–1313. [PubMed] [Google Scholar]
  9. Fernandes M. H., Soares-da-Silva P. Type A and B monoamine oxidase activities in the human and rat kidney. Acta Physiol Scand. 1992 Aug;145(4):363–367. doi: 10.1111/j.1748-1716.1992.tb09376.x. [DOI] [PubMed] [Google Scholar]
  10. Jose P. A., Raymond J. R., Bates M. D., Aperia A., Felder R. A., Carey R. M. The renal dopamine receptors. J Am Soc Nephrol. 1992 Feb;2(8):1265–1278. doi: 10.1681/ASN.V281265. [DOI] [PubMed] [Google Scholar]
  11. Kopin I. J. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev. 1985 Dec;37(4):333–364. [PubMed] [Google Scholar]
  12. Pestana M., Soares-da-Silva P. The renal handling of dopamine originating from L-dopa and gamma-glutamyl-L-dopa. Br J Pharmacol. 1994 Jun;112(2):417–422. doi: 10.1111/j.1476-5381.1994.tb13088.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saura J., Kettler R., Da Prada M., Richards J. G. Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci. 1992 May;12(5):1977–1999. doi: 10.1523/JNEUROSCI.12-05-01977.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Siragy H. M., Felder R. A., Howell N. L., Chevalier R. L., Peach M. J., Carey R. M. Evidence that intrarenal dopamine acts as a paracrine substance at the renal tubule. Am J Physiol. 1989 Sep;257(3 Pt 2):F469–F477. doi: 10.1152/ajprenal.1989.257.3.F469. [DOI] [PubMed] [Google Scholar]
  15. Soares-da-Silva P., Fernandes M. H., Albino-Teixeira A., Azevedo I., Pestana M. Brief transient ischemia induces long-term depletion of norepinephrine without affecting the aromatic amino acid decarboxylase and monoamine oxidase activities in the rat kidney. J Pharmacol Exp Ther. 1992 Feb;260(2):902–908. [PubMed] [Google Scholar]
  16. Stöcker W., Hempel K. Inactivation and excretion of dopamine by the cat kidney in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1976 Nov;295(2):123–126. doi: 10.1007/BF00499443. [DOI] [PubMed] [Google Scholar]
  17. Suzuki H., Nakane H., Kawamura M., Yoshizawa M., Takeshita E., Saruta T. Excretion and metabolism of dopa and dopamine by isolated perfused rat kidney. Am J Physiol. 1984 Sep;247(3 Pt 1):E285–E290. doi: 10.1152/ajpendo.1984.247.3.E285. [DOI] [PubMed] [Google Scholar]
  18. Wedeen R. P., Weiner B. The distribution of p-aminohippuric acid in rat kidney slices. I. Tubular localization. Kidney Int. 1973 Apr;3(4):205–213. doi: 10.1038/ki.1973.33. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES