Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Dec;113(4):1567–1573. doi: 10.1111/j.1476-5381.1994.tb17175.x

The role of nitric oxide, adrenergic activation and kinin-degradation in blood pressure homeostasis following an acute kinin-induced hypotension.

A Bjørnstad-Ostensen 1, T Berg 1
PMCID: PMC1510516  PMID: 7889314

Abstract

1. Nitric oxide (NO) has been suggested as the mediator of the vascular response to bradykinin. In the present study, we found that NO did not mediate the hypotensive response to bradykinin. In addition, the significance of kininase II in terminating a kinin-induced hypotension and the role of the adrenergic system in compensating for the acute fall in blood pressure (BP) was established. 2. In normal rats, the NO-synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) induced a rise in basal BP (delta BP = 40 +/- 6 mmHg, P < 0.0014) which was not altered by pretreatment with phentolamine (delta BP = 50 +/- 6 mmHg, NS). L-NAME did not attenuate the acute fall in BP in response to bradykinin (3-30 micrograms kg-1) or kallikrein (6-300 micrograms kg-1). However, a significant decrease was observed in the duration of the hypotensive response (P < 0.027). This shorter duration was not observed after pretreatment with phenotolamine in addition to L-NAME. Phentolamine alone prolonged the hypotensive response to bradykinin (P < 0.04). These experiments confirm the role of NO-formation as a hypotensive component in BP homeostasis but not the role of NO as a mediator in kinin-induced hypotension. It further shows that the continuous NO-release also impedes the compensatory adrenergic hypertensive response following the acute fall in BP induced by bradykinin. 3. The hypertensive response to intravenously administered phenylephrine was found to be unchanged by preadministration of L-NAME (NS) thus showing that L-NAME did not change the sensitivity to the adrenergic response.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1570

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Gross S. S., Griffith O. W., Levi R. L-arginine availability determines the duration of acetylcholine-induced systemic vasodilation in vivo. Biochem Biophys Res Commun. 1989 Sep 15;163(2):710–717. doi: 10.1016/0006-291x(89)92281-x. [DOI] [PubMed] [Google Scholar]
  2. Bogle R. G., Coade S. B., Moncada S., Pearson J. D., Mann G. E. Bradykinin and ATP stimulate L-arginine uptake and nitric oxide release in vascular endothelial cells. Biochem Biophys Res Commun. 1991 Oct 31;180(2):926–932. doi: 10.1016/s0006-291x(05)81154-4. [DOI] [PubMed] [Google Scholar]
  3. Burnstock G. Local mechanisms of blood flow control by perivascular nerves and endothelium. J Hypertens Suppl. 1990 Dec;8(7):S95–106. [PubMed] [Google Scholar]
  4. Cachofeiro V., Sakakibara T., Nasjletti A. Kinins, nitric oxide, and the hypotensive effect of captopril and ramiprilat in hypertension. Hypertension. 1992 Feb;19(2):138–145. doi: 10.1161/01.hyp.19.2.138. [DOI] [PubMed] [Google Scholar]
  5. Dzau V. J. Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertens. 1989 Dec;7(12):933–936. doi: 10.1097/00004872-198912000-00001. [DOI] [PubMed] [Google Scholar]
  6. FELDBERG W., LEWIS G. P. THE ACTION OF PEPTIDES ON THE ADRENAL MEDULLA. RELEASE OF ADRENALINE BY BRADYKININ AND ANGIOTENSIN. J Physiol. 1964 May;171:98–108. doi: 10.1113/jphysiol.1964.sp007364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  8. Göthberg G., Karlström G. Physiological effects of the humoral renomedullary antihypertensive system. Am J Hypertens. 1991 Oct;4(10 Pt 2):569S–574S. doi: 10.1093/ajh/4.10.569s. [DOI] [PubMed] [Google Scholar]
  9. Ishida H., Scicli A. G., Carretero O. A. Role of angiotensin converting enzyme and other peptidases in in vivo metabolism of kinins. Hypertension. 1989 Sep;14(3):322–327. doi: 10.1161/01.hyp.14.3.322. [DOI] [PubMed] [Google Scholar]
  10. Johansen L., Bergundhaugen H., Berg T. Rapid purification of tonin, esterase B, antigen psi and kallikrein from rat submandibular gland by fast protein liquid chromatography. J Chromatogr. 1987 Jan 30;387:347–359. doi: 10.1016/s0021-9673(01)94537-6. [DOI] [PubMed] [Google Scholar]
  11. Kelm M., Schrader J. Nitric oxide release from the isolated guinea pig heart. Eur J Pharmacol. 1988 Oct 18;155(3):317–321. doi: 10.1016/0014-2999(88)90522-5. [DOI] [PubMed] [Google Scholar]
  12. Kiowski W., Linder L., Kleinbloesem C., van Brummelen P., Bühler F. R. Blood pressure control by the renin-angiotensin system in normotensive subjects. Assessment by angiotensin converting enzyme and renin inhibition. Circulation. 1992 Jan;85(1):1–8. doi: 10.1161/01.cir.85.1.1. [DOI] [PubMed] [Google Scholar]
  13. O'Shaughnessy K. M., Newman C. M., Warren J. B. Inhibition in the rat of nitric oxide synthesis in vivo does not attenuate the hypotensive action of acetylcholine, ATP or bradykinin. Exp Physiol. 1992 Mar;77(2):285–292. doi: 10.1113/expphysiol.1992.sp003588. [DOI] [PubMed] [Google Scholar]
  14. Orstavik T. B., Carretero O. A., Johansen L., Scicli A. G. Role of kallikrein in the hypertensive effect of captopril after sympathetic stimulation of the rat submandibular gland. Circ Res. 1982 Sep;51(3):385–390. doi: 10.1161/01.res.51.3.385. [DOI] [PubMed] [Google Scholar]
  15. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  16. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Türker R. K., Ercan Z. S., Ersoy A., Zengil H. Inhibition by nicotine of the vasodilator effect of bradykinin: evidence for a prostacyclin-dependent mechanism. Arch Int Pharmacodyn Ther. 1982 May;257(1):94–103. [PubMed] [Google Scholar]
  18. Whittle B. J., Lopez-Belmonte J., Rees D. D. Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation. Br J Pharmacol. 1989 Oct;98(2):646–652. doi: 10.1111/j.1476-5381.1989.tb12639.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES