Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Dec;113(4):1121–1126. doi: 10.1111/j.1476-5381.1994.tb17112.x

Neutral endopeptidase (NEP) inhibition in rats with established pulmonary hypertension secondary to chronic hypoxia.

J S Thompson 1, W Sheedy 1, A H Morice 1
PMCID: PMC1510546  PMID: 7889263

Abstract

1. Atrial natriuretic peptide (ANP) causes vasorelaxation in the pulmonary vasculature. ANP levels are elevated in conditions characterized by pulmonary hypertension and it has been hypothesized that ANP may be autoregulatory in the pulmonary circulation. 2. One route of ANP metabolism in vivo is by the action of the enzyme neutral endopeptidase (NEP). We have studied the effects of the NEP inhibitor, SCH 42495, in rats with established pulmonary hypertension secondary to chronic hypoxia. 3. Rats (n = 32) were divided into 4 groups. Normoxic controls were kept in air for 10 days (NC10) and all other animals were placed in a normobaric hypoxic chamber (F1 O2 10%). Chronic hypoxic controls were studied at 10 days (CHC10). After 10 days hypoxia the two remaining groups received oral treatment for a further 10 days, consisting of either SCH 42495 (30 mg kg-1, twice daily CHT20) or methyl cellulose vehicle (0.4%, twice daily, CHV20). 4. Animals were anaesthetized and blood collected for measurement of plasma ANP. Hearts were dissected and ventricles weighed and the histology of the pulmonary vasculature examined. 5. CHC10 rats had significant right ventricular hypertrophy (0.53 +/- 0.08) and pulmonary vascular remodelling (29.0 +/- 0.01%) and had gained significantly less body weight (33.2 +/- 5.5 g) than NC10 rats (0.31 +/- 0.04, 10.9 +/- 0.01%, and 59.2 +/- 11.9 g respectively). CHC10 rats had significantly elevated plasma ANP levels (58.4 +/- 9.9 pM) compared with NC10 rats (23.9 +/- 32 pM).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1125

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abell T. J., Richards A. M., Ikram H., Espiner E. A., Yandle T. Atrial natriuretic factor inhibits proliferation of vascular smooth muscle cells stimulated by platelet-derived growth factor. Biochem Biophys Res Commun. 1989 May 15;160(3):1392–1396. doi: 10.1016/s0006-291x(89)80158-5. [DOI] [PubMed] [Google Scholar]
  2. Abraham A. S., Kay J. M., Cole R. B., Pincock A. C. Haemodynamic and pathological study of the effect of chronic hypoxia and subsequent recovery of the heart and pulmonary vasculature of the rat. Cardiovasc Res. 1971 Jan;5(1):95–102. doi: 10.1093/cvr/5.1.95. [DOI] [PubMed] [Google Scholar]
  3. Adams S. P. Structure and biologic properties of the atrial natriuretic peptides. Endocrinol Metab Clin North Am. 1987 Mar;16(1):1–17. [PubMed] [Google Scholar]
  4. Danilewicz J. C., Barclay P. L., Barnish I. T., Brown D., Campbell S. F., James K., Samuels G. M., Terrett N. K., Wythes M. J. UK-69,578, a novel inhibitor of EC 3.4.24.11 which increases endogenous ANF levels and is natriuretic and diuretic. Biochem Biophys Res Commun. 1989 Oct 16;164(1):58–65. doi: 10.1016/0006-291x(89)91682-3. [DOI] [PubMed] [Google Scholar]
  5. Eison H. B., Rosen M. J., Phillips R. A., Krakoff L. R. Determinants of atrial natriuretic factor in the adult respiratory distress syndrome. Chest. 1988 Nov;94(5):1040–1045. doi: 10.1378/chest.94.5.1040. [DOI] [PubMed] [Google Scholar]
  6. Furuya M., Yoshida M., Hayashi Y., Ohnuma N., Minamino N., Kangawa K., Matsuo H. C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Commun. 1991 Jun 28;177(3):927–931. doi: 10.1016/0006-291x(91)90627-j. [DOI] [PubMed] [Google Scholar]
  7. Hollister A. S., Rodeheffer R. J., White F. J., Potts J. R., Imada T., Inagami T. Clearance of atrial natriuretic factor by lung, liver, and kidney in human subjects and the dog. J Clin Invest. 1989 Feb;83(2):623–628. doi: 10.1172/JCI113926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howard P. Vasodilator drugs in chronic obstructive airways disease. Eur Respir J Suppl. 1989 Jul;7:678s–681s. [PubMed] [Google Scholar]
  9. Hunter C., Barer G. R., Shaw J. W., Clegg E. J. Growth of the heart and lungs in hypoxic rodents: a model of human hypoxic disease. Clin Sci Mol Med. 1974 Mar;46(3):375–391. doi: 10.1042/cs0460375. [DOI] [PubMed] [Google Scholar]
  10. Itoh H., Pratt R. E., Dzau V. J. Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest. 1990 Nov;86(5):1690–1697. doi: 10.1172/JCI114893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jansen T. L., Morice A. H., Brown M. J. A comparison of the vasodilator responses to atrial peptides in the pulmonary and renal arteries of the pig in vitro. Br J Pharmacol. 1987 Jul;91(3):687–691. doi: 10.1111/j.1476-5381.1987.tb11263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jin H., Yang R. H., Chen Y. F., Jackson R. M., Oparil S. Atrial natriuretic peptide attenuates the development of pulmonary hypertension in rats adapted to chronic hypoxia. J Clin Invest. 1990 Jan;85(1):115–120. doi: 10.1172/JCI114400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klinger J. R., Petit R. D., Curtin L. A., Warburton R. R., Wrenn D. S., Steinhelper M. E., Field L. J., Hill N. S. Cardiopulmonary responses to chronic hypoxia in transgenic mice that overexpress ANP. J Appl Physiol (1985) 1993 Jul;75(1):198–205. doi: 10.1152/jappl.1993.75.1.198. [DOI] [PubMed] [Google Scholar]
  14. Klinger J. R., Petit R. D., Warburton R. R., Wrenn D. S., Arnal F., Hill N. S. Neutral endopeptidase inhibition attenuates development of hypoxic pulmonary hypertension in rats. J Appl Physiol (1985) 1993 Oct;75(4):1615–1623. doi: 10.1152/jappl.1993.75.4.1615. [DOI] [PubMed] [Google Scholar]
  15. Lafferty H. M., Gunning M., Silva P., Zimmerman M. B., Brenner B. M., Anderson S. Enkephalinase inhibition increases plasma atrial natriuretic peptide levels, glomerular filtration rate, and urinary sodium excretion in rats with reduced renal mass. Circ Res. 1989 Sep;65(3):640–646. doi: 10.1161/01.res.65.3.640. [DOI] [PubMed] [Google Scholar]
  16. Leach E., Howard P., Barer G. R. Resolution of hypoxic changes in the heart and pulmonary arterioles of rats during intermittent correction of hypoxia. Clin Sci Mol Med. 1977 Feb;52(2):153–162. doi: 10.1042/cs0520153. [DOI] [PubMed] [Google Scholar]
  17. Llorens-Cortes C., Huang H., Vicart P., Gasc J. M., Paulin D., Corvol P. Identification and characterization of neutral endopeptidase in endothelial cells from venous or arterial origins. J Biol Chem. 1992 Jul 15;267(20):14012–14018. [PubMed] [Google Scholar]
  18. Matthay R. A., Niederman M. S., Wiedemann H. P. Cardiovascular-pulmonary interaction in chronic obstructive pulmonary disease with special reference to the pathogenesis and management of cor pulmonale. Med Clin North Am. 1990 May;74(3):571–618. doi: 10.1016/s0025-7125(16)30541-7. [DOI] [PubMed] [Google Scholar]
  19. McKenzie J. C., Tanaka I., Inagami T., Misono K. S., Klein R. M. Alterations in atrial and plasma atrial natriuretic factor (ANF) content during development of hypoxia-induced pulmonary hypertension in the rat. Proc Soc Exp Biol Med. 1986 Mar;181(3):459–463. doi: 10.3181/00379727-181-rc3. [DOI] [PubMed] [Google Scholar]
  20. Michael J. R., Kennedy T. P., Buescher P., Farrukh I., Lodato R., Rock P. C., Gottlieb J., Gurtner G., de la Monte S. M., Hutchins G. M. Nitrendipine attenuates the pulmonary vascular remodeling and right ventricular hypertrophy caused by intermittent hypoxia in rats. Am Rev Respir Dis. 1986 Mar;133(3):375–379. doi: 10.1164/arrd.1986.133.3.375. [DOI] [PubMed] [Google Scholar]
  21. Morice A. H., Pepke-Zaba J., Brown M. J., Thomas P. S., Higenbottam T. W. Atrial natriuretic peptide in primary pulmonary hypertension. Eur Respir J. 1990 Sep;3(8):910–913. [PubMed] [Google Scholar]
  22. Noll B., Hein H., Maisch B., von Wichert P. Veränderungen des atrialen natriuretischen Peptids bei Patienten mit Lungenembolie und obstruktiver Atemwegserkrankung. Pneumologie. 1990 Feb;44(2):70–73. [PubMed] [Google Scholar]
  23. Northridge D. B., Jardine A. G., Alabaster C. T., Barclay P. L., Connell J. M., Dargie H. J., Dilly S. G., Findlay I. N., Lever A. F., Samuels G. M. Effects of UK 69 578: a novel atriopeptidase inhibitor. Lancet. 1989 Sep 9;2(8663):591–593. doi: 10.1016/s0140-6736(89)90714-9. [DOI] [PubMed] [Google Scholar]
  24. Rich S., Kaufmann E., Levy P. S. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992 Jul 9;327(2):76–81. doi: 10.1056/NEJM199207093270203. [DOI] [PubMed] [Google Scholar]
  25. Rogers T. K., Sheedy W., Waterhouse J., Howard P., Morice A. H. Haemodynamic effects of atrial natriuretic peptide in hypoxic chronic obstructive pulmonary disease. Thorax. 1994 Mar;49(3):233–239. doi: 10.1136/thx.49.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rogers T. K., Stewart A. G., Morice A. H. Effect of chronic hypoxia on rat pulmonary resistance vessels: vasodilatation by atrial natriuretic peptide. Clin Sci (Lond) 1992 Dec;83(6):723–729. doi: 10.1042/cs0830723. [DOI] [PubMed] [Google Scholar]
  27. Shepperson N. B., Barclay P. L., Bennett J. A., Samuels G. M. Inhibition of neutral endopeptidase (EC 3.4.24.11) leads to an atrial natriuretic factor-mediated natriuretic, diuretic and antihypertensive response in rodents. Clin Sci (Lond) 1991 Mar;80(3):265–269. doi: 10.1042/cs0800265. [DOI] [PubMed] [Google Scholar]
  28. Singer D. R., Dean J. W., Buckley M. G., Sagnella G. A., MacGregor G. A. Secretion of atrial natriuretic peptide from the heart in man. Br Heart J. 1987 Jul;58(1):24–28. doi: 10.1136/hrt.58.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stanbrook H. S., Morris K. G., McMurtry I. F. Prevention and reversal of hypoxic pulmonary hypertension by calcium antagonists. Am Rev Respir Dis. 1984 Jul;130(1):81–85. doi: 10.1164/arrd.1984.130.1.81. [DOI] [PubMed] [Google Scholar]
  30. Stewart A. G., Bardsley P. A., Baudouin S. V., Waterhouse J. C., Thompson J. S., Morice A. H., Howard P. Changes in atrial natriuretic peptide concentrations during intravenous saline infusion in hypoxic cor pulmonale. Thorax. 1991 Nov;46(11):829–834. doi: 10.1136/thx.46.11.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stewart A. G., Sheedy W., Thompson J. S., Morice A. H. Effects of SCH 34826, a neutral endopeptidase inhibitor, on hypoxic pulmonary vascular remodelling. Pulm Pharmacol. 1992 Jun;5(2):111–114. doi: 10.1016/0952-0600(92)90027-e. [DOI] [PubMed] [Google Scholar]
  32. Stewart A. G., Thompson J. S., Rogers T. K., Morice A. H. Atrial natriuretic peptide-induced relaxation of pre-constricted isolated rat perfused lungs: a comparison in control and hypoxia-adapted animals. Clin Sci (Lond) 1991 Aug;81(2):201–208. doi: 10.1042/cs0810201. [DOI] [PubMed] [Google Scholar]
  33. Stingo A. J., Clavell A. L., Aarhus L. L., Burnett J. C., Jr Cardiovascular and renal actions of C-type natriuretic peptide. Am J Physiol. 1992 Jan;262(1 Pt 2):H308–H312. doi: 10.1152/ajpheart.1992.262.1.H308. [DOI] [PubMed] [Google Scholar]
  34. Sybertz E. J., Chiu P. J., Vemulapalli S., Watkins R., Haslanger M. F. Atrial natriuretic factor-potentiating and antihypertensive activity of SCH 34826. An orally active neutral metalloendopeptidase inhibitor. Hypertension. 1990 Feb;15(2):152–161. doi: 10.1161/01.hyp.15.2.152. [DOI] [PubMed] [Google Scholar]
  35. Sybertz E. J., Jr, Chiu P. J., Watkins R. W., Vemulapalli S. Neutral metalloendopeptidase inhibition: a novel means of circulatory modulation. J Hypertens Suppl. 1990 Dec;8(7):S161–S167. [PubMed] [Google Scholar]
  36. Thompson J. S., Sheedy W., Morice A. H. Effects of the neutral endopeptidase inhibitor, SCH 42495, on the cardiovascular remodelling secondary to chronic hypoxia in rats. Clin Sci (Lond) 1994 Jul;87(1):109–114. doi: 10.1042/cs0870109. [DOI] [PubMed] [Google Scholar]
  37. Tremblay J., Gerzer R., Vinay P., Pang S. C., Béliveau R., Hamet P. The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett. 1985 Feb 11;181(1):17–22. doi: 10.1016/0014-5793(85)81105-4. [DOI] [PubMed] [Google Scholar]
  38. Watkins R. W., Vemulapalli S., Chiu P. J., Foster C., Smith E. M., Neustadt B., Haslanger M., Sybertz E. J. Atrial natriuretic factor potentiating and hemodynamic effects of SCH 42495, a new, neutral metalloendopeptidase inhibitor. Am J Hypertens. 1993 May;6(5 Pt 1):357–368. doi: 10.1093/ajh/6.5.357. [DOI] [PubMed] [Google Scholar]
  39. Wilkins M. R., Nunez D. J., Wharton J. The natriuretic peptide family: turning hormones into drugs. J Endocrinol. 1993 Jun;137(3):347–359. doi: 10.1677/joe.0.1370347. [DOI] [PubMed] [Google Scholar]
  40. Winter R. J., Davidson A. C., Treacher D., Rudd R. M., Anderson J. V., Meleagros L., Bloom S. R. Atrial natriuretic peptide concentrations in hypoxic secondary pulmonary hypertension: relation to haemodynamic and blood gas variables and response to supplemental oxygen. Thorax. 1989 Jan;44(1):58–62. doi: 10.1136/thx.44.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Winter R. J., Zhao L., Krausz T., Hughes J. M. Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia. Am Rev Respir Dis. 1991 Dec;144(6):1342–1346. doi: 10.1164/ajrccm/144.6.1342. [DOI] [PubMed] [Google Scholar]
  42. Zhao L., Winter R. J., Krausz T., Hughes J. M. Effects of continuous infusion of atrial natriuretic peptide on the pulmonary hypertension induced by chronic hypoxia in rats. Clin Sci (Lond) 1991 Sep;81(3):379–385. doi: 10.1042/cs0810379. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES