Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1995 Jun;72(6):502–506. doi: 10.1136/adc.72.6.502

Renal transplantation and osteoporosis.

A M Boot 1, J Nauta 1, A C Hokken-Koelega 1, H A Pols 1, M A de Ridder 1, S M de Muinck Keizer-Schrama 1
PMCID: PMC1511130  PMID: 7618934

Abstract

A cross sectional study assessed the bone mineral density (BMD) of 20 young adult patients who received a renal transplantation in childhood. The BMD of the lumbar spine, mainly trabecular bone, and of the total body, mainly cortical bone, were measured and expressed as an SD score. Fourteen patients (70%) had a BMD SD score of the lumbar spine below -1, of whom six patients were below -2. Fifteen patients (75%) had a BMD SD score of the total body below -1, of whom seven patients were below -2, Both trabecular and cortical bone appeared to be involved in the osteopenic process. The cumulative dose of prednisone was inversely correlated to both lumbar spine and total body BMD SD score. In a multiple regression analysis the cumulative dose of prednisone appeared to be the only factor with a significant effect on BMD SD score. Most young adult patients who had received a renal transplantation in childhood had moderate to severe osteopenia. Corticosteroid treatment played a major part in the development of osteopenia in these patients.

Full text

PDF
506

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonjour J. P., Theintz G., Buchs B., Slosman D., Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991 Sep;73(3):555–563. doi: 10.1210/jcem-73-3-555. [DOI] [PubMed] [Google Scholar]
  2. Carter D. R., Bouxsein M. L., Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992 Feb;7(2):137–145. doi: 10.1002/jbmr.5650070204. [DOI] [PubMed] [Google Scholar]
  3. Chesney R. W., Rose P. G., Mazess R. B. Persistence of diminished bone mineral content following renal transplantation in childhood. Pediatrics. 1984 Apr;73(4):459–466. [PubMed] [Google Scholar]
  4. Cummings S. R., Black D. M., Nevitt M. C., Browner W., Cauley J., Ensrud K., Genant H. K., Palermo L., Scott J., Vogt T. M. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993 Jan 9;341(8837):72–75. doi: 10.1016/0140-6736(93)92555-8. [DOI] [PubMed] [Google Scholar]
  5. Dykman T. R., Gluck O. S., Murphy W. A., Hahn T. J., Hahn B. H. Evaluation of factors associated with glucocorticoid-induced osteopenia in patients with rheumatic diseases. Arthritis Rheum. 1985 Apr;28(4):361–368. doi: 10.1002/art.1780280402. [DOI] [PubMed] [Google Scholar]
  6. Erdtsieck R. J., Pols H. A., Algra D., Kooy P. P., Birkenhäger J. C. Bone mineral density in healthy Dutch women: spine and hip measurements using dual-energy X-ray absorptiometry. Neth J Med. 1994 Nov;45(5):198–205. [PubMed] [Google Scholar]
  7. Felson D. T., Zhang Y., Hannan M. T., Anderson J. J. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res. 1993 May;8(5):567–573. doi: 10.1002/jbmr.5650080507. [DOI] [PubMed] [Google Scholar]
  8. Finkelstein J. S., Neer R. M., Biller B. M., Crawford J. D., Klibanski A. Osteopenia in men with a history of delayed puberty. N Engl J Med. 1992 Feb 27;326(9):600–604. doi: 10.1056/NEJM199202273260904. [DOI] [PubMed] [Google Scholar]
  9. Gilsanz V., Gibbens D. T., Roe T. F., Carlson M., Senac M. O., Boechat M. I., Huang H. K., Schulz E. E., Libanati C. R., Cann C. C. Vertebral bone density in children: effect of puberty. Radiology. 1988 Mar;166(3):847–850. doi: 10.1148/radiology.166.3.3340782. [DOI] [PubMed] [Google Scholar]
  10. Gordon C. L., Halton J. M., Atkinson S. A., Webber C. E. The contributions of growth and puberty to peak bone mass. Growth Dev Aging. 1991 Winter;55(4):257–262. [PubMed] [Google Scholar]
  11. Herd R. J., Blake G. M., Parker J. C., Ryan P. J., Fogelman I. Total body studies in normal British women using dual energy X-ray absorptiometry. Br J Radiol. 1993 Apr;66(784):303–308. doi: 10.1259/0007-1285-66-784-303. [DOI] [PubMed] [Google Scholar]
  12. Hokken-Koelega A. C., van Zaal M. A., van Bergen W., de Ridder M. A., Stijnen T., Wolff E. D., de Jong R. C., Donckerwolcke R. A., de Muinck Keizer-Schrama S. M., Drop S. L. Final height and its predictive factors after renal transplantation in childhood. Pediatr Res. 1994 Sep;36(3):323–328. doi: 10.1203/00006450-199409000-00009. [DOI] [PubMed] [Google Scholar]
  13. Julian B. A., Laskow D. A., Dubovsky J., Dubovsky E. V., Curtis J. J., Quarles L. D. Rapid loss of vertebral mineral density after renal transplantation. N Engl J Med. 1991 Aug 22;325(8):544–550. doi: 10.1056/NEJM199108223250804. [DOI] [PubMed] [Google Scholar]
  14. Kröger H., Kotaniemi A., Vainio P., Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 1992 Apr;17(1):75–85. doi: 10.1016/0169-6009(92)90712-m. [DOI] [PubMed] [Google Scholar]
  15. Kwan J. T., Almond M. K., Evans K., Cunningham J. Changes in total body bone mineral content and regional bone mineral density in renal patients following renal transplantation. Miner Electrolyte Metab. 1992;18(2-5):166–168. [PubMed] [Google Scholar]
  16. Laan R. F., van Riel P. L., van de Putte L. B., van Erning L. J., van't Hof M. A., Lemmens J. A. Low-dose prednisone induces rapid reversible axial bone loss in patients with rheumatoid arthritis. A randomized, controlled study. Ann Intern Med. 1993 Nov 15;119(10):963–968. doi: 10.7326/0003-4819-119-10-199311150-00001. [DOI] [PubMed] [Google Scholar]
  17. Lukert B. P., Raisz L. G. Glucocorticoid-induced osteoporosis: pathogenesis and management. Ann Intern Med. 1990 Mar 1;112(5):352–364. doi: 10.7326/0003-4819-112-5-352. [DOI] [PubMed] [Google Scholar]
  18. Malluche H. H., Monier-Faugere M. C. Uremic bone disease: current knowledge, controversial issues, and new horizons. Miner Electrolyte Metab. 1991;17(4):281–296. [PubMed] [Google Scholar]
  19. Martin T. J., Ng K. W., Nicholson G. C. Cell biology of bone. Baillieres Clin Endocrinol Metab. 1988 Feb;2(1):1–29. [PubMed] [Google Scholar]
  20. Mazess R. B., Barden H. S., Bisek J. P., Hanson J. Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr. 1990 Jun;51(6):1106–1112. doi: 10.1093/ajcn/51.6.1106. [DOI] [PubMed] [Google Scholar]
  21. Mazess R. B., Pedersen P., Vetter J., Barden H. S. Bone densitometry of excised vertebrae; anatomical relationships. Calcif Tissue Int. 1991 Jun;48(6):380–386. doi: 10.1007/BF02556450. [DOI] [PubMed] [Google Scholar]
  22. Najjar M. F., Rowland M. Anthropometric reference data and prevalence of overweight, United States, 1976-80. Vital Health Stat 11. 1987 Oct;(238):1–73. [PubMed] [Google Scholar]
  23. Nielsen H. E. Bone mineral content in renal transplant patients. Clin Nephrol. 1978 Nov;10(5):196–200. [PubMed] [Google Scholar]
  24. Pfeilschifter J., Siegrist E., Wüster C., Blind E., Ziegler R. Serum levels of intact parathyroid hormone and alkaline phosphatase correlate with cortical and trabecular bone loss in primary hyperparathyroidism. Acta Endocrinol (Copenh) 1992 Oct;127(4):319–323. doi: 10.1530/acta.0.1270319. [DOI] [PubMed] [Google Scholar]
  25. Reid I. R. Pathogenesis and treatment of steroid osteoporosis. Clin Endocrinol (Oxf) 1989 Jan;30(1):83–103. doi: 10.1111/j.1365-2265.1989.tb03730.x. [DOI] [PubMed] [Google Scholar]
  26. Ross P. D., Davis J. W., Epstein R. S., Wasnich R. D. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med. 1991 Jun 1;114(11):919–923. doi: 10.7326/0003-4819-114-11-919. [DOI] [PubMed] [Google Scholar]
  27. Rubin K., Schirduan V., Gendreau P., Sarfarazi M., Mendola R., Dalsky G. Predictors of axial and peripheral bone mineral density in healthy children and adolescents, with special attention to the role of puberty. J Pediatr. 1993 Dec;123(6):863–870. doi: 10.1016/s0022-3476(05)80381-6. [DOI] [PubMed] [Google Scholar]
  28. Rüegsegger P., Medici T. C., Anliker M. Corticosteroid-induced bone loss. A longitudinal study of alternate day therapy in patients with bronchial asthma using quantitative computed tomography. Eur J Clin Pharmacol. 1983;25(5):615–620. doi: 10.1007/BF00542348. [DOI] [PubMed] [Google Scholar]
  29. Tanner J. M., Whitehouse R. H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976 Mar;51(3):170–179. doi: 10.1136/adc.51.3.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Theintz G., Buchs B., Rizzoli R., Slosman D., Clavien H., Sizonenko P. C., Bonjour J. P. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992 Oct;75(4):1060–1065. doi: 10.1210/jcem.75.4.1400871. [DOI] [PubMed] [Google Scholar]
  31. van Diemen-Steenvoorde R., Donckerwolcke R. A., Brackel H., Wolff E. D., de Jong M. C. Growth and sexual maturation in children after kidney transplantation. J Pediatr. 1987 Mar;110(3):351–356. doi: 10.1016/s0022-3476(87)80493-6. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES