Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1995 Sep;103(Suppl 6):135–142. doi: 10.1289/ehp.95103s6135

Neurobehavioral effects of developmental methylmercury exposure.

S G Gilbert 1, K S Grant-Webster 1
PMCID: PMC1518933  PMID: 8549462

Abstract

Methylmercury (MeHg) is a global environmental problem and is listed by the International Program of Chemical Safety as one of the six most dangerous chemicals in the world's environment. Human exposure to MeHg primarily occurs through the consumption of contaminated food such as fish, although catastrophic exposures due to industrial pollution have occurred. The fetus is particularly sensitive to MeHg exposure and adverse effects on infant development have been associated with levels of exposure that result in few, if any, signs of maternal clinical illness or toxicity. High levels of prenatal exposure in humans result in neurobehavioral effects such as cerebral palsy and severe mental retardation. Prenatal exposure to MeHg in communities with chronic low-level exposure is related to decreased birthweight and early sensorimotor dysfunction such as delayed onset of walking. Neurobehavioral alterations have also been documented in studies with nonhuman primates and rodents. Available information on the developmental neurotoxic effects of MeHg, particularly the neurobehavioral effects, indicates that the fetus and infant are more sensitive to adverse effects of MeHg. It is therefore recommended that pregnant women and women of childbearing age be strongly advised to limit their exposure to potential sources of MeHg. Based on results from human and animal studies on the developmental neurotoxic effects of methylmercury, the accepted reference dose should be lowered to 0.025 to 0.06 MeHg microgram/kg/day. Continued research on the neurotoxic effects associated with low level developmental exposure is needed.

Full text

PDF
142

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amin-Zaki L., Elhassani S., Majeed M. A., Clarkson T. W., Doherty R. A., Greenwood M. R., Giovanoli-Jakubczak T. Perinatal methylmercury poisoning in Iraq. Am J Dis Child. 1976 Oct;130(10):1070–1076. doi: 10.1001/archpedi.1976.02120110032004. [DOI] [PubMed] [Google Scholar]
  2. Amin-Zaki L., Majeed M. A., Elhassani S. B., Clarkson T. W., Greenwood M. R., Doherty R. A. Prenatal methylmercury poisoning. Clinical observations over five years. Am J Dis Child. 1979 Feb;133(2):172–177. [PubMed] [Google Scholar]
  3. Amin-Zaki L., Majeed M. A., Greenwood M. R., Elhassani S. B., Clarkson T. W., Doherty R. A. Methylmercury poisoning in the Iraqi suckling infant: a longitudinal study over five years. J Appl Toxicol. 1981 Aug;1(4):210–214. doi: 10.1002/jat.2550010405. [DOI] [PubMed] [Google Scholar]
  4. Bartolome J. V., Kavlock R. J., Cowdery T., Orband-Miller L., Slotkin T. A. Development of adrenergic receptor binding sites in brain regions of the neonatal rat: effects of prenatal or postnatal exposure to methylmercury. Neurotoxicology. 1987 Spring;8(1):1–13. [PubMed] [Google Scholar]
  5. Bondy S. C., McKee M. Prevention of chemically induced synaptosomal changes. J Neurosci Res. 1990 Feb;25(2):229–235. doi: 10.1002/jnr.490250211. [DOI] [PubMed] [Google Scholar]
  6. Bornhausen M., Müsch H. R., Greim H. Operant behavior performance changes in rats after prenatal methylmercury exposure. Toxicol Appl Pharmacol. 1980 Dec;56(3):305–310. doi: 10.1016/0041-008x(80)90062-9. [DOI] [PubMed] [Google Scholar]
  7. Buelke-Sam J., Kimmel C. A., Adams J., Nelson C. J., Vorhees C. V., Wright D. C., St Omer V., Korol B. A., Butcher R. E., Geyer M. A. Collaborative Behavioral Teratology Study: results. Neurobehav Toxicol Teratol. 1985 Nov-Dec;7(6):591–624. [PubMed] [Google Scholar]
  8. Burbacher T. M., Mohamed M. K., Mottett N. K. Methylmercury effects on reproduction and offspring size at birth. Reprod Toxicol. 1987 1988;1(4):267–278. doi: 10.1016/0890-6238(87)90018-9. [DOI] [PubMed] [Google Scholar]
  9. Burbacher T. M., Rodier P. M., Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol. 1990 May-Jun;12(3):191–202. doi: 10.1016/0892-0362(90)90091-p. [DOI] [PubMed] [Google Scholar]
  10. Chang L. W. Neurotoxic effects of mercury--a review. Environ Res. 1977 Dec;14(3):329–373. doi: 10.1016/0013-9351(77)90044-5. [DOI] [PubMed] [Google Scholar]
  11. Choi B. H., Lapham L. W., Amin-Zaki L., Saleem T. Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J Neuropathol Exp Neurol. 1978 Nov-Dec;37(6):719–733. doi: 10.1097/00005072-197811000-00001. [DOI] [PubMed] [Google Scholar]
  12. Choi B. H. Methylmercury poisoning of the developing nervous system: I. Pattern of neuronal migration in the cerebral cortex. Neurotoxicology. 1986 Summer;7(2):591–600. [PubMed] [Google Scholar]
  13. Clarkson T. W. Mercury: major issues in environmental health. Environ Health Perspect. 1993 Apr;100:31–38. doi: 10.1289/ehp.9310031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Coles C. D. Impact of prenatal alcohol exposure on the newborn and the child. Clin Obstet Gynecol. 1993 Jun;36(2):255–266. doi: 10.1097/00003081-199306000-00007. [DOI] [PubMed] [Google Scholar]
  15. Cox C., Clarkson T. W., Marsh D. O., Amin-Zaki L., Tikriti S., Myers G. G. Dose-response analysis of infants prenatally exposed to methyl mercury: an application of a single compartment model to single-strand hair analysis. Environ Res. 1989 Aug;49(2):318–332. doi: 10.1016/s0013-9351(89)80075-1. [DOI] [PubMed] [Google Scholar]
  16. Cuomo V., Ambrosi L., Annau Z., Cagiano R., Brunello N., Racagni G. Behavioural and neurochemical changes in offspring of rats exposed to methyl mercury during gestation. Neurobehav Toxicol Teratol. 1984 May-Jun;6(3):249–254. [PubMed] [Google Scholar]
  17. Driscoll C. D., Streissguth A. P., Riley E. P. Prenatal alcohol exposure: comparability of effects in humans and animal models. Neurotoxicol Teratol. 1990 May-Jun;12(3):231–237. doi: 10.1016/0892-0362(90)90094-s. [DOI] [PubMed] [Google Scholar]
  18. Dyer R. S., Eccles C. U., Annau Z. Evoked potential alterations following prenatal methyl mercury exposure. Pharmacol Biochem Behav. 1978 Feb;8(2):137–141. doi: 10.1016/0091-3057(78)90330-1. [DOI] [PubMed] [Google Scholar]
  19. Eccles C. U., Annau Z. Prenatal methyl mercury exposure: I. Alterations in neonatal activity. Neurobehav Toxicol Teratol. 1982 May-Jun;4(3):371–376. [PubMed] [Google Scholar]
  20. Eccles C. U., Annau Z. Prenatal methyl mercury exposure: II. Alterations in learning and psychotropic drug sensitivity in adult offspring. Neurobehav Toxicol Teratol. 1982 May-Jun;4(3):377–382. [PubMed] [Google Scholar]
  21. Ellis J. E., Byrd L. D., Sexson W. R., Patterson-Barnett C. A. In utero exposure to cocaine: a review. South Med J. 1993 Jul;86(7):725–731. doi: 10.1097/00007611-199307000-00001. [DOI] [PubMed] [Google Scholar]
  22. Fitzgerald W. F., Clarkson T. W. Mercury and monomethylmercury: present and future concerns. Environ Health Perspect. 1991 Dec;96:159–166. doi: 10.1289/ehp.9196159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Foldspang A., Hansen J. C. Dietary intake of methylmercury as a correlate of gestational length and birth weight among newborns in Greenland. Am J Epidemiol. 1990 Aug;132(2):310–317. doi: 10.1093/oxfordjournals.aje.a115660. [DOI] [PubMed] [Google Scholar]
  24. Geelen J. A., Dormans J. A., Verhoef A. The early effects of methylmercury on the developing rat brain. Acta Neuropathol. 1990;80(4):432–438. doi: 10.1007/BF00307699. [DOI] [PubMed] [Google Scholar]
  25. Geyer M. A., Butcher R. E., Fite K. A study of startle and locomotor activity in rats exposed prenatally to methylmercury. Neurobehav Toxicol Teratol. 1985 Nov-Dec;7(6):759–765. [PubMed] [Google Scholar]
  26. Gilbert S. G., Burbacher T. M., Rice D. C. Effects of in utero methylmercury exposure on a spatial delayed alternation task in monkeys. Toxicol Appl Pharmacol. 1993 Nov;123(1):130–136. doi: 10.1006/taap.1993.1229. [DOI] [PubMed] [Google Scholar]
  27. Grandjean P., Weihe P., Jørgensen P. J., Clarkson T., Cernichiari E., Viderø T. Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead. Arch Environ Health. 1992 May-Jun;47(3):185–195. doi: 10.1080/00039896.1992.9938348. [DOI] [PubMed] [Google Scholar]
  28. Grandjean P., Weihe P. Neurobehavioral effects of intrauterine mercury exposure: potential sources of bias. Environ Res. 1993 Apr;61(1):176–183. doi: 10.1006/enrs.1993.1062. [DOI] [PubMed] [Google Scholar]
  29. Gunderson V. M., Grant-Webster K. S., Burbacher T. M., Mottet N. K. Visual recognition memory deficits in methylmercury-exposed Macaca fascicularis infants. Neurotoxicol Teratol. 1988 Jul-Aug;10(4):373–379. doi: 10.1016/0892-0362(88)90041-4. [DOI] [PubMed] [Google Scholar]
  30. Gunderson V. M., Grant K. S., Burbacher T. M., Fagan J. F., 3rd, Mottet N. K. The effect of low-level prenatal methylmercury exposure on visual recognition memory in infant crab-eating macaques. Child Dev. 1986 Aug;57(4):1076–1083. [PubMed] [Google Scholar]
  31. Hamada R., Yoshida Y., Nomoto M., Osame M., Igata A., Mishima I., Kuwano A. Computed tomography in fetal methylmercury poisoning. J Toxicol Clin Toxicol. 1993;31(1):101–106. doi: 10.3109/15563659309000377. [DOI] [PubMed] [Google Scholar]
  32. Hansen J. C., Tarp U., Bohm J. Prenatal exposure to methyl mercury among Greenlandic polar Inuits. Arch Environ Health. 1990 Nov-Dec;45(6):355–358. doi: 10.1080/00039896.1990.10118754. [DOI] [PubMed] [Google Scholar]
  33. Harada M. Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology. 1978 Oct;18(2):285–288. doi: 10.1002/tera.1420180216. [DOI] [PubMed] [Google Scholar]
  34. Hirayama K., Yasutake A., Inoue M. Effect of sex hormones on the fate of methylmercury and on glutathione metabolism in mice. Biochem Pharmacol. 1987 Jun 15;36(12):1919–1924. doi: 10.1016/0006-2952(87)90489-8. [DOI] [PubMed] [Google Scholar]
  35. Hirayama K., Yasutake A. Sex and age differences in mercury distribution and excretion in methylmercury-administered mice. J Toxicol Environ Health. 1986;18(1):49–60. doi: 10.1080/15287398609530847. [DOI] [PubMed] [Google Scholar]
  36. Hughes J. A., Annau Z. Postnatal behavioral effects in mice after prenatal exposure to methylmercury. Pharmacol Biochem Behav. 1976 Apr;4(4):385–391. doi: 10.1016/0091-3057(76)90052-6. [DOI] [PubMed] [Google Scholar]
  37. Hughes J. A., Sparber S. B. d-Amphetamine unmasks postnatal consequences of exposure to methylmercury in utero: methods for studying behavioral teratogenesis. Pharmacol Biochem Behav. 1978 Apr;8(4):365–375. doi: 10.1016/0091-3057(78)90072-2. [DOI] [PubMed] [Google Scholar]
  38. Inouye M., Murao K., Kajiwara Y. Behavioral and neuropathological effects of prenatal methylmercury exposure in mice. Neurobehav Toxicol Teratol. 1985 May-Jun;7(3):227–232. [PubMed] [Google Scholar]
  39. Jacobson J. L., Jacobson S. W., Humphrey H. E. Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol Teratol. 1990 Jul-Aug;12(4):319–326. doi: 10.1016/0892-0362(90)90050-m. [DOI] [PubMed] [Google Scholar]
  40. Jacobson J. L., Jacobson S. W., Humphrey H. E. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr. 1990 Jan;116(1):38–45. doi: 10.1016/s0022-3476(05)81642-7. [DOI] [PubMed] [Google Scholar]
  41. Jacobson J. L., Jacobson S. W., Sokol R. J., Martier S. S., Ager J. W., Kaplan-Estrin M. G. Teratogenic effects of alcohol on infant development. Alcohol Clin Exp Res. 1993 Feb;17(1):174–183. doi: 10.1111/j.1530-0277.1993.tb00744.x. [DOI] [PubMed] [Google Scholar]
  42. Landrigan P. J., Graham D. G., Thomas R. D. Strategies for the prevention of environmental neurotoxic illness. Environ Res. 1993 Apr;61(1):157–163. doi: 10.1006/enrs.1993.1060. [DOI] [PubMed] [Google Scholar]
  43. LeBel C. P., Ali S. F., McKee M., Bondy S. C. Organometal-induced increases in oxygen reactive species: the potential of 2',7'-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol. 1990 Jun 1;104(1):17–24. doi: 10.1016/0041-008x(90)90278-3. [DOI] [PubMed] [Google Scholar]
  44. Marsh D. O., Clarkson T. W., Cox C., Myers G. J., Amin-Zaki L., Al-Tikriti S. Fetal methylmercury poisoning. Relationship between concentration in single strands of maternal hair and child effects. Arch Neurol. 1987 Oct;44(10):1017–1022. doi: 10.1001/archneur.1987.00520220023010. [DOI] [PubMed] [Google Scholar]
  45. Marsh D. O., Myers G. J., Clarkson T. W., Amin-Zaki L., Tikriti S., Majeed M. A., Dabbagh A. R. Dose-response relationship for human fetal exposure to methylmercury. Clin Toxicol. 1981 Nov;18(11):1311–1318. doi: 10.3109/00099308109035071. [DOI] [PubMed] [Google Scholar]
  46. Marsh D. O., Myers G. J., Clarkson T. W., Amin-Zaki L., Tikriti S., Majeed M. A. Fetal methylmercury poisoning: clinical and toxicological data on 29 cases. Ann Neurol. 1980 Apr;7(4):348–353. doi: 10.1002/ana.410070412. [DOI] [PubMed] [Google Scholar]
  47. Matsumoto H., Koya G., Takeuchi T. Fetal Minamata disease. A neuropathological study of two cases of intrauterine intoxication by a methyl mercury compound. J Neuropathol Exp Neurol. 1965 Oct;24(4):563–574. [PubMed] [Google Scholar]
  48. McKeown-Eyssen G. E., Ruedy J., Neims A. Methyl mercury exposure in northern Quebec. II. Neurologic findings in children. Am J Epidemiol. 1983 Oct;118(4):470–479. doi: 10.1093/oxfordjournals.aje.a113652. [DOI] [PubMed] [Google Scholar]
  49. Mottet N. K., Shaw C. M., Burbacher T. M. Health risks from increases in methylmercury exposure. Environ Health Perspect. 1985 Nov;63:133–140. doi: 10.1289/ehp.8563133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Müsch H. R., Bornhausen M., Kriegel H., Greim H. Methylmercury chloride induces learning deficits in prenatally treated rats. Arch Toxicol. 1978 Apr 27;40(2):103–108. doi: 10.1007/BF01891964. [DOI] [PubMed] [Google Scholar]
  51. Needleman H. L., Bellinger D. The health effects of low level exposure to lead. Annu Rev Public Health. 1991;12:111–140. doi: 10.1146/annurev.pu.12.050191.000551. [DOI] [PubMed] [Google Scholar]
  52. Needleman H. L., Gatsonis C. A. Low-level lead exposure and the IQ of children. A meta-analysis of modern studies. JAMA. 1990 Feb 2;263(5):673–678. [PubMed] [Google Scholar]
  53. Needleman H. L. The future challenge of lead toxicity. Environ Health Perspect. 1990 Nov;89:85–89. doi: 10.1289/ehp.908985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Needleman H. L. The persistent threat of lead: medical and sociological issues. Curr Probl Pediatr. 1988 Dec;18(12):697–744. doi: 10.1016/0045-9380(88)90004-7. [DOI] [PubMed] [Google Scholar]
  55. Needleman H. L. What can the study of lead teach us about other toxicants? Environ Health Perspect. 1990 Jun;86:183–189. doi: 10.1289/ehp.9086183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Pfeiffer W. C., de Lacerda L. D., Malm O., Souza C. M., da Silveira E. G., Bastos W. R. Mercury concentrations in inland waters of gold-mining areas in Rondônia, Brazil. Sci Total Environ. 1989 Nov;87-88:233–240. doi: 10.1016/0048-9697(89)90238-6. [DOI] [PubMed] [Google Scholar]
  57. Rice D. C. Delayed neurotoxicity in monkeys exposed developmentally to methylmercury. Neurotoxicology. 1989 Winter;10(4):645–650. [PubMed] [Google Scholar]
  58. Rice D. C. Effects of pre- plus postnatal exposure to methylmercury in the monkey on fixed interval and discrimination reversal performance. Neurotoxicology. 1992 Summer;13(2):443–452. [PubMed] [Google Scholar]
  59. Rice D. C., Gilbert S. G. Early chronic low-level methylmercury poisoning in monkeys impairs spatial vision. Science. 1982 May 14;216(4547):759–761. doi: 10.1126/science.7079739. [DOI] [PubMed] [Google Scholar]
  60. Rice D. C., Gilbert S. G. Effects of developmental exposure to methyl mercury on spatial and temporal visual function in monkeys. Toxicol Appl Pharmacol. 1990 Jan;102(1):151–163. doi: 10.1016/0041-008x(90)90092-9. [DOI] [PubMed] [Google Scholar]
  61. Rogan W. J., Gladen B. C., McKinney J. D., Carreras N., Hardy P., Thullen J., Tinglestad J., Tully M. Neonatal effects of transplacental exposure to PCBs and DDE. J Pediatr. 1986 Aug;109(2):335–341. doi: 10.1016/s0022-3476(86)80397-3. [DOI] [PubMed] [Google Scholar]
  62. Rogan W. J., Gladen B. C. Neurotoxicology of PCBs and related compounds. Neurotoxicology. 1992 Spring;13(1):27–35. [PubMed] [Google Scholar]
  63. Sager P. R., Aschner M., Rodier P. M. Persistent, differential alterations in developing cerebellar cortex of male and female mice after methylmercury exposure. Brain Res. 1984 Jan;314(1):1–11. doi: 10.1016/0165-3806(84)90170-6. [DOI] [PubMed] [Google Scholar]
  64. Sager P. R., Matheson D. W. Mechanisms of neurotoxicity related to selective disruption of microtubules and intermediate filaments. Toxicology. 1988 May;49(2-3):479–492. doi: 10.1016/0300-483x(88)90034-0. [DOI] [PubMed] [Google Scholar]
  65. Sager P. R. Selectivity of methyl mercury effects on cytoskeleton and mitotic progression in cultured cells. Toxicol Appl Pharmacol. 1988 Jul;94(3):473–486. doi: 10.1016/0041-008x(88)90288-8. [DOI] [PubMed] [Google Scholar]
  66. Sarafian T., Verity M. A. Oxidative mechanisms underlying methyl mercury neurotoxicity. Int J Dev Neurosci. 1991;9(2):147–153. doi: 10.1016/0736-5748(91)90005-7. [DOI] [PubMed] [Google Scholar]
  67. Schalock R. L., Brown W. J., Kark R. A., Menon N. K. Perinatal methylmercury intoxication: behavioral effects in rats. Dev Psychobiol. 1981 May;14(3):213–219. doi: 10.1002/dev.420140310. [DOI] [PubMed] [Google Scholar]
  68. Slotkin T. A., Bartolome J. Biochemical mechanisms of developmental neurotoxicity of methylmercury. Neurotoxicology. 1987 Spring;8(1):65–84. [PubMed] [Google Scholar]
  69. Spyker J. M., Smithberg M. Effects of methylmercury on prenatal development in mice. Teratology. 1972 Apr;5(2):181–190. doi: 10.1002/tera.1420050208. [DOI] [PubMed] [Google Scholar]
  70. Spyker J. M., Sparber S. B., Goldberg A. M. Subtle consequences of methylmercury exposure: behavioral deviations in offspring of treated mothers. Science. 1972 Aug 18;177(4049):621–623. doi: 10.1126/science.177.4049.621. [DOI] [PubMed] [Google Scholar]
  71. Stern A. H. Re-evaluation of the reference dose for methylmercury and assessment of current exposure levels. Risk Anal. 1993 Jun;13(3):355–364. doi: 10.1111/j.1539-6924.1993.tb01087.x. [DOI] [PubMed] [Google Scholar]
  72. Streissguth A. P. Fetal alcohol syndrome: early and long-term consequences. NIDA Res Monogr. 1992;119:126–130. [PubMed] [Google Scholar]
  73. Streissguth A. P. Prenatal alcohol-induced brain damage and long-term postnatal consequences: introduction to the symposium. Alcohol Clin Exp Res. 1990 Oct;14(5):648–649. doi: 10.1111/j.1530-0277.1990.tb01221.x. [DOI] [PubMed] [Google Scholar]
  74. Su M. Q., Okita G. T. Behavioral effects on the progeny of mice treated with methylmercury. Toxicol Appl Pharmacol. 1976 Oct;38(1):195–205. doi: 10.1016/0041-008x(76)90173-3. [DOI] [PubMed] [Google Scholar]
  75. Suzuki T., Yonemoto J., Satoh H., Naganuma A., Imura N., Kigawa T. Normal organic and inorganic mercury levels in the human feto-placental system. J Appl Toxicol. 1984 Oct;4(5):249–252. doi: 10.1002/jat.2550040507. [DOI] [PubMed] [Google Scholar]
  76. Syversen T. L., Totland G., Flood P. R. Early morphological changes in rat cerebellum caused by a single dose of methylmercury. Arch Toxicol. 1981 Apr;47(2):101–111. doi: 10.1007/BF00332352. [DOI] [PubMed] [Google Scholar]
  77. Tilson H. A., Jacobson J. L., Rogan W. J. Polychlorinated biphenyls and the developing nervous system: cross-species comparisons. Neurotoxicol Teratol. 1990 May-Jun;12(3):239–248. doi: 10.1016/0892-0362(90)90095-t. [DOI] [PubMed] [Google Scholar]
  78. Vogel D. G., Margolis R. L., Mottet N. K. Analysis of methyl mercury binding sites on tubulin subunits and microtubules. Pharmacol Toxicol. 1989 Feb;64(2):196–201. doi: 10.1111/j.1600-0773.1989.tb00630.x. [DOI] [PubMed] [Google Scholar]
  79. Vorhees C. V. Behavioral effects of prenatal methylmercury in rats: a parallel trial to the Collaborative Behavioral Teratology Study. Neurobehav Toxicol Teratol. 1985 Nov-Dec;7(6):717–725. [PubMed] [Google Scholar]
  80. Zenick H. Behavioral and biochemical consequences in methylmercury chloride toxicity. Pharmacol Biochem Behav. 1974 Nov-Dec;2(6):709–713. doi: 10.1016/0091-3057(74)90098-7. [DOI] [PubMed] [Google Scholar]
  81. Zenick H. Evoked potential alterations in methylmercury chloride toxicity. Pharmacol Biochem Behav. 1976 Sep;5(3):253–255. doi: 10.1016/0091-3057(76)90075-7. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES