Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1995 Jun;103(Suppl 5):101–105. doi: 10.1289/ehp.95103s4101

In situ bioremediation of chlorinated solvents.

L Semprini 1
PMCID: PMC1519306  PMID: 8565895

Abstract

Chlorinated solvents and their natural transformation products are the most frequently observed groundwater contaminants in the United States. In situ bioremediation using anaerobic or aerobic co-metabolic processes is a promising means of cleaning up contaminated aquifers. Studies show that under natural conditions trichloroethylene can be anaerobically degraded to dichloroethylene, vinyl chloride, and ethylene. Pilot scale field studies of in situ aerobic co-metabolic transformations have shown that indigenous microbes grown on phenol are more effective at degrading trichloroethylene and cis-1,2-dichloroethylene than microbes grown on methane. Modeling studies support field observations and indicate that the removal of trichloroethylene and cis-dichloroethylene results from the biostimulation of an indigenous microbial population. Field tests and modeling studies indicate that, at high TCE concentration, degradation becomes stoichiometrically limited.

Full text

PDF
102

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Cohen L., McCarty P. L. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol. 1991 Apr;57(4):1031–1037. doi: 10.1128/aem.57.4.1031-1037.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DiStefano T. D., Gossett J. M., Zinder S. H. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl Environ Microbiol. 1992 Nov;58(11):3622–3629. doi: 10.1128/aem.58.11.3622-3629.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DiStefano T. D., Gossett J. M., Zinder S. H. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol. 1991 Aug;57(8):2287–2292. doi: 10.1128/aem.57.8.2287-2292.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freedman D. L., Gossett J. M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol. 1989 Sep;55(9):2144–2151. doi: 10.1128/aem.55.9.2144-2151.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hopkins G. D., Semprini L., McCarty P. L. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Appl Environ Microbiol. 1993 Jul;59(7):2277–2285. doi: 10.1128/aem.59.7.2277-2285.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Vogel T. M., McCarty P. L. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol. 1985 May;49(5):1080–1083. doi: 10.1128/aem.49.5.1080-1083.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES