Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1993 Dec;101(Suppl 5):115–120. doi: 10.1289/ehp.93101s5115

Cell proliferation and renal carcinogenesis.

B G Short 1
PMCID: PMC1519426  PMID: 7516872

Abstract

Enhanced cell proliferation occurs at several stages of renal tumorigenesis. Initiation by genotoxic nephrocarcinogens such as dimethylnitrosamine (DMN) is likely a result of DNA damage coupled with an initial burst of DNA synthesis associated with the cytotoxic effects of the compound. The level of initiation by DMN can be further enhanced by unilateral nephrectomy or hydronephrosis, which induces a brief burst of cell proliferation followed by tumorigenesis in the contralateral kidney. The role of sustained cell proliferation in renal tumor development is less well understood. The most compelling evidence comes from studies with nongenotoxic renal carcinogens such as unleaded gasoline and d-limonene, which induce alpha 2u-globulin (alpha G) nephropathy and renal epithelial tumors exclusively in male rats. Sustained increases in cell proliferation in these studies depend on the presence of a chemical-alpha G complex in phagolysosomes of P2 proximal tubule cells, which results in cytotoxicity and compensatory hyperplasia only in male F344 rats, but not female F344 rats or alpha G deficient male NBR rats. Furthermore, initiation-promotion experiments demonstrated a strong correlation between the dose-response of cell proliferation and the incidence of preneoplastic and neoplastic lesions. Clearly, similar correlative studies with a number of other renal carcinogens and non-carcinogens are warranted before general conclusions can be made. Cell proliferation is excessively elevated in tubules affected by chronic progressive nephropathy, but the significance of the lesion to renal carcinogenesis is unclear. Elucidating mechanisms of renal cell proliferation are necessary for our understanding of cause and effect relationships. An exciting recent finding is altered expression of transforming growth factor-alpha in hereditary rat renal cell carcinoma.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
120

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Charbonneau M., Strasser J., Jr, Lock E. A., Turner M. J., Jr, Swenberg J. A. Involvement of reversible binding to alpha 2u-globulin in 1,4-dichlorobenzene-induced nephrotoxicity. Toxicol Appl Pharmacol. 1989 Jun 1;99(1):122–132. doi: 10.1016/0041-008x(89)90117-8. [DOI] [PubMed] [Google Scholar]
  2. Choie D. D., Richter G. W. Cell proliferation in rat kidneys after prolonged treatment with lead. Am J Pathol. 1972 Aug;68(2):359–370. [PMC free article] [PubMed] [Google Scholar]
  3. Cohen S. M., Ellwein L. B. Genetic errors, cell proliferation, and carcinogenesis. Cancer Res. 1991 Dec 15;51(24):6493–6505. [PubMed] [Google Scholar]
  4. Columbano A., Ledda-Columbano G. M., Coni P., Pani P. Failure of mitogen-induced cell proliferation to achieve initiation of rat liver carcinogenesis. Carcinogenesis. 1987 Feb;8(2):345–347. doi: 10.1093/carcin/8.2.345. [DOI] [PubMed] [Google Scholar]
  5. Dietrich D. R., Swenberg J. A. Preneoplastic lesions in rodent kidney induced spontaneously or by non-genotoxic agents: predictive nature and comparison to lesions induced by genotoxic carcinogens. Mutat Res. 1991 Jun;248(2):239–260. doi: 10.1016/0027-5107(91)90060-2. [DOI] [PubMed] [Google Scholar]
  6. Dietrich D. R., Swenberg J. A. The presence of alpha 2u-globulin is necessary for d-limonene promotion of male rat kidney tumors. Cancer Res. 1991 Jul 1;51(13):3512–3521. [PubMed] [Google Scholar]
  7. Dominick M. A., Robertson D. G., Bleavins M. R., Sigler R. E., Bobrowski W. F., Gough A. W. Alpha 2u-globulin nephropathy without nephrocarcinogenesis in male Wistar rats administered 1-(aminomethyl)cyclohexaneacetic acid. Toxicol Appl Pharmacol. 1991 Dec;111(3):375–387. doi: 10.1016/0041-008x(91)90244-9. [DOI] [PubMed] [Google Scholar]
  8. Eldridge S. R., Tilbury L. F., Goldsworthy T. L., Butterworth B. E. Measurement of chemically induced cell proliferation in rodent liver and kidney: a comparison of 5-bromo-2'-deoxyuridine and [3H]thymidine administered by injection or osmotic pump. Carcinogenesis. 1990 Dec;11(12):2245–2251. doi: 10.1093/carcin/11.12.2245. [DOI] [PubMed] [Google Scholar]
  9. Flamm W. G., Lehman-McKeeman L. D. The human relevance of the renal tumor-inducing potential of d-limonene in male rats: implications for risk assessment. Regul Toxicol Pharmacol. 1991 Feb;13(1):70–86. doi: 10.1016/0273-2300(91)90042-t. [DOI] [PubMed] [Google Scholar]
  10. Goldsworthy T. L., Lyght O., Burnett V. L., Popp J. A. Potential role of alpha-2 mu-globulin, protein droplet accumulation, and cell replication in the renal carcinogenicity of rats exposed to trichloroethylene, perchloroethylene, and pentachloroethane. Toxicol Appl Pharmacol. 1988 Nov;96(2):367–379. doi: 10.1016/0041-008x(88)90095-6. [DOI] [PubMed] [Google Scholar]
  11. Green T., Odum J., Nash J. A., Foster J. R. Perchloroethylene-induced rat kidney tumors: an investigation of the mechanisms involved and their relevance to humans. Toxicol Appl Pharmacol. 1990 Mar 15;103(1):77–89. doi: 10.1016/0041-008x(90)90264-u. [DOI] [PubMed] [Google Scholar]
  12. Hagiwara A., Diwan B. A., Ward J. M. Barbital sodium, a tumor promoter for kidney tubules, urinary bladder, and liver of the F344 rat, induces persistent increases in levels of DNA synthesis in renal tubules but not in urinary bladder epithelium or hepatocytes. Fundam Appl Toxicol. 1989 Aug;13(2):332–340. doi: 10.1016/0272-0590(89)90269-8. [DOI] [PubMed] [Google Scholar]
  13. Hard G. C. Autoradiographic analysis of proliferative activity in rat kidney epithelial and mesenchymal cell subpopulations following a carcinogenic dose of dimethylnitrosamine. Cancer Res. 1975 Dec;35(12):3762–3773. [PubMed] [Google Scholar]
  14. Hiasa Y., Ito N. Experimental induction of renal tumors. Crit Rev Toxicol. 1987;17(4):279–343. doi: 10.3109/10408448709029325. [DOI] [PubMed] [Google Scholar]
  15. Hiasa Y., Ohshima M., Kitahori Y., Fujita T., Yuasa T., Miyashiro A. Basic lead acetate: promoting effect on the development of renal tubular cell tumors in rats treated with N-ethyl-N-hydroxyethylnitrosamine. J Natl Cancer Inst. 1983 Apr;70(4):761–765. [PubMed] [Google Scholar]
  16. Kanerva R. L., McCracken M. S., Alden C. L., Stone L. C. Morphogenesis of decalin-induced renal alterations in the male rat. Food Chem Toxicol. 1987 Jan;25(1):53–61. doi: 10.1016/0278-6915(87)90307-3. [DOI] [PubMed] [Google Scholar]
  17. Kaufmann W. K., Rice J. M., MacKenzie S. A., Smith G. J., Wenk M. L., Devor D., Qaqish B. F., Kaufman D. G. Proliferation of carcinogen-damaged hepatocytes during cell-cycle-dependent initiation of hepatocarcinogenesis in the rat. Carcinogenesis. 1991 Sep;12(9):1587–1593. doi: 10.1093/carcin/12.9.1587. [DOI] [PubMed] [Google Scholar]
  18. Kluwe W. M., Abdo K. M., Huff J. Chronic kidney disease and organic chemical exposures: evaluations of causal relationships in humans and experimental animals. Fundam Appl Toxicol. 1984 Dec;4(6):889–901. doi: 10.1016/0272-0590(84)90227-6. [DOI] [PubMed] [Google Scholar]
  19. Konishi N., Diwan B. A., Ward J. M. Amelioration of sodium barbital-induced nephropathy and regenerative tubular hyperplasia after a single injection of streptozotocin does not abolish the renal tumor promoting effect of barbital sodium in male F344/NC4 rats. Carcinogenesis. 1990 Dec;11(12):2149–2156. doi: 10.1093/carcin/11.12.2149. [DOI] [PubMed] [Google Scholar]
  20. Ledda-Columbano G. M., Columbano A., Coni P., Faa G., Pani P. Cell deletion by apoptosis during regression of renal hyperplasia. Am J Pathol. 1989 Oct;135(4):657–662. [PMC free article] [PubMed] [Google Scholar]
  21. Ledda-Columbano G. M., Columbano A., Curto M., Ennas M. G., Coni P., Sarma D. S., Pani P. Further evidence that mitogen-induced cell proliferation does not support the formation of enzyme-altered islands in rat liver by carcinogens. Carcinogenesis. 1989 May;10(5):847–850. doi: 10.1093/carcin/10.5.847. [DOI] [PubMed] [Google Scholar]
  22. Mattie D. R., Alden C. L., Newell T. K., Gaworski C. L., Flemming C. D. A 90-day continuous vapor inhalation toxicity study of JP-8 jet fuel followed by 20 or 21 months of recovery in Fischer 344 rats and C57BL/6 mice. Toxicol Pathol. 1991;19(2):77–87. doi: 10.1177/019262339101900201. [DOI] [PubMed] [Google Scholar]
  23. Metzler M. Nephrocarcinogenicity of estrogens. Toxicol Lett. 1990 Sep;53(1-2):111–114. doi: 10.1016/0378-4274(90)90103-s. [DOI] [PubMed] [Google Scholar]
  24. Oberley T. D., Gonzalez A., Lauchner L. J., Oberley L. W., Li J. J. Characterization of early kidney lesions in estrogen-induced tumors in the Syrian hamster. Cancer Res. 1991 Apr 1;51(7):1922–1929. [PubMed] [Google Scholar]
  25. Ohmori T. Enhancing effect on N-nitrosodimethylamine-induced tumorigenesis by unilateral hydronephrosis. J Natl Cancer Inst. 1984 Oct;73(4):951–957. [PubMed] [Google Scholar]
  26. Olson M. J., Garg B. D., Murty C. V., Roy A. K. Accumulation of alpha 2u-globulin in the renal proximal tubules of male rats exposed to unleaded gasoline. Toxicol Appl Pharmacol. 1987 Aug;90(1):43–51. doi: 10.1016/0041-008x(87)90304-8. [DOI] [PubMed] [Google Scholar]
  27. Popp J. A., Marsman D. S. Chemically induced cell proliferation in liver carcinogenesis. Prog Clin Biol Res. 1991;369:389–395. [PubMed] [Google Scholar]
  28. Short B. G., Burnett V. L., Cox M. G., Bus J. S., Swenberg J. A. Site-specific renal cytotoxicity and cell proliferation in male rats exposed to petroleum hydrocarbons. Lab Invest. 1987 Nov;57(5):564–577. [PubMed] [Google Scholar]
  29. Short B. G., Burnett V. L., Swenberg J. A. Elevated proliferation of proximal tubule cells and localization of accumulated alpha 2u-globulin in F344 rats during chronic exposure to unleaded gasoline or 2,2,4-trimethylpentane. Toxicol Appl Pharmacol. 1989 Dec;101(3):414–431. doi: 10.1016/0041-008x(89)90191-9. [DOI] [PubMed] [Google Scholar]
  30. Short B. G., Steinhagen W. H., Swenberg J. A. Promoting effects of unleaded gasoline and 2,2,4-trimethylpentane on the development of atypical cell foci and renal tubular cell tumors in rats exposed to N-ethyl-N-hydroxyethylnitrosamine. Cancer Res. 1989 Nov 15;49(22):6369–6378. [PubMed] [Google Scholar]
  31. Stevens J. L., Jones T. W. The role of damage and proliferation in renal carcinogenesis. Toxicol Lett. 1990 Sep;53(1-2):121–126. doi: 10.1016/0378-4274(90)90105-u. [DOI] [PubMed] [Google Scholar]
  32. Swenberg J. A., Short B., Borghoff S., Strasser J., Charbonneau M. The comparative pathobiology of alpha 2u-globulin nephropathy. Toxicol Appl Pharmacol. 1989 Jan;97(1):35–46. doi: 10.1016/0041-008x(89)90053-7. [DOI] [PubMed] [Google Scholar]
  33. Tennant R. W., Elwell M. R., Spalding J. W., Griesemer R. A. Evidence that toxic injury is not always associated with induction of chemical carcinogenesis. Mol Carcinog. 1991;4(6):420–440. doi: 10.1002/mc.2940040604. [DOI] [PubMed] [Google Scholar]
  34. Tsuda H., Moore M. A., Asamoto M., Satoh K., Tsuchida S., Sato K., Ichihara A., Ito N. Comparison of the various forms of glutathione S-transferase with glucose-6-phosphate dehydrogenase and gamma-glutamyltranspeptidase as markers of preneoplastic and neoplastic lesions in rat kidney induced by N-ethyl-N-hydroxyethylnitrosamine. Jpn J Cancer Res. 1985 Oct;76(10):919–929. [PubMed] [Google Scholar]
  35. Walker C., Everitt J., Freed J. J., Knudson A. G., Jr, Whiteley L. O. Altered expression of transforming growth factor-alpha in hereditary rat renal cell carcinoma. Cancer Res. 1991 Jun 1;51(11):2973–2978. [PubMed] [Google Scholar]
  36. Wallin A., Zhang G., Jones T. W., Jaken S., Stevens J. L. Mechanism of the nephrogenic repair response. Studies on proliferation and vimentin expression after 35S-1,2-dichlorovinyl-L-cysteine nephrotoxicity in vivo and in cultured proximal tubule epithelial cells. Lab Invest. 1992 Apr;66(4):474–484. [PubMed] [Google Scholar]
  37. ZOLLINGER H. U. Durch chronische Bleivergiftung erzeugte Nierenadenome und -carcinome bei Ratten und ihre Beziehungen zu den entsprechenden Neubildungen des Menschen. Virchows Arch Pathol Anat Physiol Klin Med. 1953;323(6):694–710. doi: 10.1007/BF00956266. [DOI] [PubMed] [Google Scholar]
  38. Zajicek G., Arber N. Streaming kidney. Cell Prolif. 1991 Jul;24(4):375–382. doi: 10.1111/j.1365-2184.1991.tb01166.x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES