Abstract
As the first step in the process of carcinogenesis, most chemical carcinogens require metabolic activation by cytochromes P450 for conversion to highly reactive electrophiles that bind covalently to DNA. Studies in rodents suggest that low or high levels of expression of a single P450 can determine susceptibility or resistance to chemically induced cancer. Although rodent systems have been used to explore the molecular basis of chemical carcinogenesis and to identify chemicals capable of damaging genes and causing cancer, it has been understood that marked species differences exist in the expression, regulation, and catalytic activities of different P450s. Thus, large efforts are underway to study the catalytic activities of human P450s directly by expression of their cDNAs in cultured cells. Two systems are being used: a) transient high-level P450 production in HepG2 cells for analysis of catalytic activities, and b) stable expression in human B-lymphoblastoid cells to study promutagen and procarcinogen activation. These studies define the relative contributions of individual P450 forms to the activation of various chemical carcinogens. The B-lymphoblastoid cDNA expression system can also be used to determine whether a chemical will be hazardous or toxic to humans. The most intriguing aspects of P450s are the occurrence of human genetic polymorphisms in P450 expression, which could be a risk factor for chemical carcinogenesis. The best-studied P450 genetic polymorphism is the debrisoquine/sparteine polymorphism which is due to mutant CYP2D6 alleles. Four mutant alleles have been characterized that account for most of the defective CYP2D6 genes in Caucasians. These can be detected by polymerase chain reaction assays.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamson R. H. Induction of hepatocellular carcinoma in nonhuman primates by chemical carcinogens. Cancer Detect Prev. 1989;14(2):215–219. [PubMed] [Google Scholar]
- Aoyama T., Gelboin H. V., Gonzalez F. J. Mutagenic activation of 2-amino-3-methylimidazo[4,5-f]quinoline by complementary DNA-expressed human liver P-450. Cancer Res. 1990 Apr 1;50(7):2060–2063. [PubMed] [Google Scholar]
- Aoyama T., Yamano S., Guzelian P. S., Gelboin H. V., Gonzalez F. J. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4790–4793. doi: 10.1073/pnas.87.12.4790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aoyama T., Yamano S., Waxman D. J., Lapenson D. P., Meyer U. A., Fischer V., Tyndale R., Inaba T., Kalow W., Gelboin H. V. Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem. 1989 Jun 25;264(18):10388–10395. [PubMed] [Google Scholar]
- Brian W. R., Sari M. A., Iwasaki M., Shimada T., Kaminsky L. S., Guengerich F. P. Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccharomyces cerevisiae. Biochemistry. 1990 Dec 25;29(51):11280–11292. doi: 10.1021/bi00503a018. [DOI] [PubMed] [Google Scholar]
- Brian W. R., Srivastava P. K., Umbenhauer D. R., Lloyd R. S., Guengerich F. P. Expression of a human liver cytochrome P-450 protein with tolbutamide hydroxylase activity in Saccharomyces cerevisiae. Biochemistry. 1989 Jun 13;28(12):4993–4999. doi: 10.1021/bi00438a014. [DOI] [PubMed] [Google Scholar]
- Caporaso N., Landi M. T., Vineis P. Relevance of metabolic polymorphisms to human carcinogenesis: evaluation of epidemiologic evidence. Pharmacogenetics. 1991 Oct;1(1):4–19. doi: 10.1097/00008571-199110000-00003. [DOI] [PubMed] [Google Scholar]
- Crespi C. L., Gonzalez F. J., Steimel D. T., Turner T. R., Gelboin H. V., Penman B. W., Langenbach R. A metabolically competent human cell line expressing five cDNAs encoding procarcinogen-activating enzymes: application to mutagenicity testing. Chem Res Toxicol. 1991 Sep-Oct;4(5):566–572. doi: 10.1021/tx00023a013. [DOI] [PubMed] [Google Scholar]
- Crespi C. L., Penman B. W., Gelboin H. V., Gonzalez F. J. A tobacco smoke-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6. Carcinogenesis. 1991 Jul;12(7):1197–1201. doi: 10.1093/carcin/12.7.1197. [DOI] [PubMed] [Google Scholar]
- Crespi C. L., Penman B. W., Steimel D. T., Gelboin H. V., Gonzalez F. J. The development of a human cell line stably expressing human CYP3A4: role in the metabolic activation of aflatoxin B1 and comparison to CYP1A2 and CYP2A3. Carcinogenesis. 1991 Feb;12(2):355–359. doi: 10.1093/carcin/12.2.355. [DOI] [PubMed] [Google Scholar]
- Crespi C. L., Thilly W. G. Assay for gene mutation in a human lymphoblast line, AHH-1, competent for xenobiotic metabolism. Mutat Res. 1984 Sep;128(2):221–230. doi: 10.1016/0027-5107(84)90110-6. [DOI] [PubMed] [Google Scholar]
- Distlerath L. M., Reilly P. E., Martin M. V., Davis G. G., Wilkinson G. R., Guengerich F. P. Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J Biol Chem. 1985 Jul 25;260(15):9057–9067. [PubMed] [Google Scholar]
- Eugster H. P., Sengstag C., Meyer U. A., Hinnen A., Würgler F. E. Constitutive and inducible expression of human cytochrome P450IA1 in yeast Saccharomyces cerevisiae: an alternative enzyme source for in vitro studies. Biochem Biophys Res Commun. 1990 Oct 30;172(2):737–744. doi: 10.1016/0006-291x(90)90736-7. [DOI] [PubMed] [Google Scholar]
- Furuya H., Meyer U. A., Gelboin H. V., Gonzalez F. J. Polymerase chain reaction-directed identification, cloning, and quantification of human CYP2C18 mRNA. Mol Pharmacol. 1991 Sep;40(3):375–382. [PubMed] [Google Scholar]
- Gonzalez F. J., Meyer U. A. Molecular genetics of the debrisoquin-sparteine polymorphism. Clin Pharmacol Ther. 1991 Sep;50(3):233–238. doi: 10.1038/clpt.1991.131. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Nebert D. W. Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990 Jun;6(6):182–186. doi: 10.1016/0168-9525(90)90174-5. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Schmid B. J., Umeno M., Mcbride O. W., Hardwick J. P., Meyer U. A., Gelboin H. V., Idle J. R. Human P450PCN1: sequence, chromosome localization, and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase. DNA. 1988 Mar;7(2):79–86. doi: 10.1089/dna.1988.7.79. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Skoda R. C., Kimura S., Umeno M., Zanger U. M., Nebert D. W., Gelboin H. V., Hardwick J. P., Meyer U. A. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988 Feb 4;331(6155):442–446. doi: 10.1038/331442a0. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
- Guengerich F. P., Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol. 1991 Jul-Aug;4(4):391–407. doi: 10.1021/tx00022a001. [DOI] [PubMed] [Google Scholar]
- McManus M. E., Stupans I., Ioannoni B., Burgess W., Robson R. A., Birkett D. J. Identification and quantitation in human liver of cytochromes P-450 analogous to rabbit cytochromes P-450 forms 4 and 6. Xenobiotica. 1988 Feb;18(2):207–216. doi: 10.3109/00498258809041656. [DOI] [PubMed] [Google Scholar]
- Nebert D. W., Nelson D. R., Coon M. J., Estabrook R. W., Feyereisen R., Fujii-Kuriyama Y., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991 Jan-Feb;10(1):1–14. doi: 10.1089/dna.1991.10.1. [DOI] [PubMed] [Google Scholar]
- Nelson D. R., Strobel H. W. Evolution of cytochrome P-450 proteins. Mol Biol Evol. 1987 Nov;4(6):572–593. doi: 10.1093/oxfordjournals.molbev.a040471. [DOI] [PubMed] [Google Scholar]
- Nhamburo P. T., Gonzalez F. J., McBride O. W., Gelboin H. V., Kimura S. Identification of a new P450 expressed in human lung: complete cDNA sequence, cDNA-directed expression, and chromosome mapping. Biochemistry. 1989 Oct 3;28(20):8060–8066. doi: 10.1021/bi00446a014. [DOI] [PubMed] [Google Scholar]
- Nhamburo P. T., Kimura S., McBride O. W., Kozak C. A., Gelboin H. V., Gonzalez F. J. The human CYP2F gene subfamily: identification of a cDNA encoding a new cytochrome P450, cDNA-directed expression, and chromosome mapping. Biochemistry. 1990 Jun 12;29(23):5491–5499. doi: 10.1021/bi00475a012. [DOI] [PubMed] [Google Scholar]
- Relling M. V., Aoyama T., Gonzalez F. J., Meyer U. A. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther. 1990 Jan;252(1):442–447. [PubMed] [Google Scholar]
- Romkes M., Faletto M. B., Blaisdell J. A., Raucy J. L., Goldstein J. A. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry. 1991 Apr 2;30(13):3247–3255. doi: 10.1021/bi00227a012. [DOI] [PubMed] [Google Scholar]
- Sugimura T. Carcinogenicity of mutagenic heterocyclic amines formed during the cooking process. Mutat Res. 1985 Jun-Jul;150(1-2):33–41. doi: 10.1016/0027-5107(85)90098-3. [DOI] [PubMed] [Google Scholar]
- Tyndale R., Aoyama T., Broly F., Matsunaga T., Inaba T., Kalow W., Gelboin H. V., Meyer U. A., Gonzalez F. J. Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype. Pharmacogenetics. 1991 Oct;1(1):26–32. doi: 10.1097/00008571-199110000-00005. [DOI] [PubMed] [Google Scholar]
- Umeno M., McBride O. W., Yang C. S., Gelboin H. V., Gonzalez F. J. Human ethanol-inducible P450IIE1: complete gene sequence, promoter characterization, chromosome mapping, and cDNA-directed expression. Biochemistry. 1988 Dec 13;27(25):9006–9013. doi: 10.1021/bi00425a019. [DOI] [PubMed] [Google Scholar]
- White R. E., Coon M. J. Oxygen activation by cytochrome P-450. Annu Rev Biochem. 1980;49:315–356. doi: 10.1146/annurev.bi.49.070180.001531. [DOI] [PubMed] [Google Scholar]
- Wrighton S. A., Campanile C., Thomas P. E., Maines S. L., Watkins P. B., Parker G., Mendez-Picon G., Haniu M., Shively J. E., Levin W. Identification of a human liver cytochrome P-450 homologous to the major isosafrole-inducible cytochrome P-450 in the rat. Mol Pharmacol. 1986 Apr;29(4):405–410. [PubMed] [Google Scholar]
- Yamano S., Nhamburo P. T., Aoyama T., Meyer U. A., Inaba T., Kalow W., Gelboin H. V., McBride O. W., Gonzalez F. J. cDNA cloning and sequence and cDNA-directed expression of human P450 IIB1: identification of a normal and two variant cDNAs derived from the CYP2B locus on chromosome 19 and differential expression of the IIB mRNAs in human liver. Biochemistry. 1989 Sep 5;28(18):7340–7348. doi: 10.1021/bi00444a029. [DOI] [PubMed] [Google Scholar]
- Yamano S., Tatsuno J., Gonzalez F. J. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry. 1990 Feb 6;29(5):1322–1329. doi: 10.1021/bi00457a031. [DOI] [PubMed] [Google Scholar]
- Yoo J. S., Guengerich F. P., Yang C. S. Metabolism of N-nitrosodialkylamines by human liver microsomes. Cancer Res. 1988 Mar 15;48(6):1499–1504. [PubMed] [Google Scholar]