Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Aug;106(8):493–497. doi: 10.1289/ehp.106-1533201

15N investigation into the effect of a pollutant on the nitrogen metabolism of Tetrahymena pyriformis as a model for environmental medical research.

K Arndt 1, D Hofmann 1, M Gehre 1, P Krumbiegel 1
PMCID: PMC1533201  PMID: 9681977

Abstract

A pilot study was performed to examine the potential of stable isotope techniques for monitoring the impact of a harmful substance on the cellular nitrogen metabolism in the ciliate species Tetrahymena pyriformis. After identical cultivation periods of control cells and toluene-exposed cells in a defined culture medium enriched with [guanidino-15N2]l-arginine, a number of nitrogen-containing pools were analyzed: 1) quantity and 15N abundance of ammonia as the end product of nitrogen metabolism in the system; 2) pattern and 15N abundances of the protein-bound amino acids in the cells; 3) pattern and 15N abundances of free amino acids in the cells; and 4) pattern and 15N abundances of the amino acids in the culture medium. In addition to 15N emission spectrometry, a new gas chromatography/combustion interface-isotope ratio mass spectrometry/mass spectrometry analytical system was used. The production and 15N content of ammonia were higher in the toluene-exposed system by 30% and 43%, respectively, indicating higher deamination rates and greater arginine consumption. The toluene-exposed cells exhibited increased 15N abundances of protein-bound amino acids in alanine, aspartic acid, glutamic acid, and tyrosine. Furthermore, structural analyses revealed the presence of N[Omega]-acetylarginine and pyrrolidonecarboxylic acid--compounds that had not previously been detected in Tetrahymena pyriformis. Differences in the 15N-enrichment of free amino acids were also evident. This new effect-monitoring system designed to investigate the impact of a pollutant on protein metabolism by using a stable isotope-labeled cell culture is a powerful tool for environmental medical research.

Full text

PDF
493

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley D. L., Prah J. D. Time dependence of blood concentrations during and after exposure to a mixture of volatile organic compounds. Arch Environ Health. 1997 Jan-Feb;52(1):26–33. doi: 10.1080/00039899709603796. [DOI] [PubMed] [Google Scholar]
  2. Chand P., Clausen J. Effects of toluene on cytochrome P-450 mixed function oxygenase and glutathione-S-transferase activities in rat brain and liver. Bull Environ Contam Toxicol. 1982 May;28(5):542–545. doi: 10.1007/BF01605581. [DOI] [PubMed] [Google Scholar]
  3. Deibel R. H. Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J Bacteriol. 1964 May;87(5):988–992. doi: 10.1128/jb.87.5.988-992.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Esmans E. L., Alderweireldt F. C., Marescau B. A., Lowenthal A. A. Desorption chemical ionization mass spectrometry of guanidino compounds. Anal Chem. 1984 Apr;56(4):693–695. doi: 10.1021/ac00268a024. [DOI] [PubMed] [Google Scholar]
  5. Geike F. Effect of hexachlorobenzene (HCB) on the activity of some enzymes from Tetrahymena pyriformis. Bull Environ Contam Toxicol. 1978 Nov;20(5):640–646. doi: 10.1007/BF01683577. [DOI] [PubMed] [Google Scholar]
  6. Hill D. L., Chambers P. The biosynthesis of proline by Tetrahymena pyriformis. Biochim Biophys Acta. 1967 Nov 28;148(2):435–447. doi: 10.1016/0304-4165(67)90140-7. [DOI] [PubMed] [Google Scholar]
  7. Hill D. L., Van Eys J. The relationship between arginine, citrulline and ornithine in Tetrahymena pyriformis. J Protozool. 1965 May;12(2):259–265. doi: 10.1111/j.1550-7408.1965.tb01848.x. [DOI] [PubMed] [Google Scholar]
  8. Kaiser F. E., Gehrke C. W., Zumwalt R. W., Kuo K. C. Amino acid analysis. Hydrolysis, ion-exchange cleanup, derivatization, and quantitation by gas-liquid chromatography. J Chromatogr. 1974 Jul 17;94(0):113–133. doi: 10.1016/s0021-9673(01)92361-1. [DOI] [PubMed] [Google Scholar]
  9. LEVY M. R., SHERBAUM O. H. GLYCONEGENESIS IN GROWING AND NON-GROWING CULTURES OF TETRAHYMENA PYRIFORMIS. J Gen Microbiol. 1965 Feb;38:221–230. doi: 10.1099/00221287-38-2-221. [DOI] [PubMed] [Google Scholar]
  10. Larsen J., Svensmark B., Nilsson J. R. Variation in the growth medium during the culture cycle of Tetrahymena: with special reference to ammonia (NH3), ammonium (NH4+), and pH1. J Protozool. 1988 Nov;35(4):541–546. doi: 10.1111/j.1550-7408.1988.tb04148.x. [DOI] [PubMed] [Google Scholar]
  11. Lee F. J., Lin L. W., Smith J. A. A N(alpha)-acetyltransferase selectively transfers an acetyl group to NH2-terminal methionine residues: purification and partial characterization. Biochim Biophys Acta. 1997 Apr 4;1338(2):244–252. doi: 10.1016/s0167-4838(96)00200-2. [DOI] [PubMed] [Google Scholar]
  12. Liu Y., Fechter L. D. Toluene disrupts outer hair cell morphometry and intracellular calcium homeostasis in cochlear cells of guinea pigs. Toxicol Appl Pharmacol. 1997 Feb;142(2):270–277. doi: 10.1006/taap.1996.8059. [DOI] [PubMed] [Google Scholar]
  13. Metges C. C., Petzke K. J., Hennig U. Gas chromatography/combustion/isotope ratio mass spectrometric comparison of N-acetyl- and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples: a pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs. J Mass Spectrom. 1996 Apr;31(4):367–376. doi: 10.1002/(SICI)1096-9888(199604)31:4<367::AID-JMS310>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  14. Metges C. C., Petzke K. J. Measurement of 15N/14N isotopic composition in individual plasma free amino acids of human adults at natural abundance by gas chromatography-combustion isotope ratio mass spectrometry. Anal Biochem. 1997 Apr 5;247(1):158–164. doi: 10.1006/abio.1997.2037. [DOI] [PubMed] [Google Scholar]
  15. Müller A., Herbarth O. Tetrahymena pyriformis--ein Zelltestsystem für die Umweltmedizin. Untersuchungen zum Schadstoffeinfluss auf die Zellmorphologie von Tetrahymena pyriformis. Zentralbl Hyg Umweltmed. 1994 Oct;196(3):227–236. [PubMed] [Google Scholar]
  16. Noever D. A., Matsos H. C., Cronise R. J., Looger L. L., Relwani R. A., Johnson J. U. Computerized in vitro test for chemical toxicity based on Tetrahymena swimming patterns. Chemosphere. 1994 Sep;29(6):1373–1384. doi: 10.1016/0045-6535(94)90269-0. [DOI] [PubMed] [Google Scholar]
  17. Porter P., Blum J. J., Elrod H. Subcellular distribution of aspartate transaminase, alanine amino transferase, glutamate dehydrogenases, and lactate dehydrogenase in Tetrahymena. J Protozool. 1972 May;19(2):375–378. doi: 10.1111/j.1550-7408.1972.tb03481.x. [DOI] [PubMed] [Google Scholar]
  18. Porter P., Blum J. J. On the regulation of tyrosine transaminase, glutamatic dehydrogenase and aspartic transaminase in Tetrahymena. Exp Cell Res. 1973 Mar 15;77(1):335–345. doi: 10.1016/0014-4827(73)90585-5. [DOI] [PubMed] [Google Scholar]
  19. RYLEY J. F. Studies on the metabolism of the Protozoa. III. Metabolism of the ciliate Tetrahymena pyriformis (Glaucoma piriformis). Biochem J. 1952 Nov;52(3):483–492. doi: 10.1042/bj0520483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reynolds H. Effect of type of carbohydrate on amino acid accumulation and utilization by Tetrahymena. J Bacteriol. 1970 Nov;104(2):719–725. doi: 10.1128/jb.104.2.719-725.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sauvant M. P., Pépin D., Grolière C. A., Bohatier J. Effects of organic and inorganic substances on the cell proliferation of L-929 fibroblasts and Tetrahymena pyriformis GL protozoa used for toxicological bioassays. Bull Environ Contam Toxicol. 1995 Aug;55(2):171–178. doi: 10.1007/BF00203006. [DOI] [PubMed] [Google Scholar]
  22. Schäcke G., Lüdersdorf R., Heydenreich-Adloff B. Verhalten der Aminosäuren bei Toluol-exponierten Erwebstätigen. Zentralbl Arbeitsmed Arbeitsschutz Prophyl Ergonomie. 1982 Dec;32(12):430–432. [PubMed] [Google Scholar]
  23. Silverman J. Preliminary findings on the use of protozoa (Tetrahymena thermophila) as models for ocular irritation testing in rabbits. Lab Anim Sci. 1983 Feb;33(1):56–59. [PubMed] [Google Scholar]
  24. Tap O., Solmaz S., Polat S., Mete U. O., Ozbilgïn M. K., Kaya M. The effect of toluene on the rat ovary: an ultrastructural study. J Submicrosc Cytol Pathol. 1996 Oct;28(4):553–558. [PubMed] [Google Scholar]
  25. Wallaert B., Voisin C. In vitro study of gas effects on alveolar macrophages. Cell Biol Toxicol. 1992 Jul-Sep;8(3):151–156. doi: 10.1007/BF00130522. [DOI] [PubMed] [Google Scholar]
  26. Wragg J. B., Reynolds H., Pelczar M. J. Free Amino Acids in Serine-Antagonized Cells of Tetrahymena pyriformis. J Bacteriol. 1965 Sep;90(3):748–754. doi: 10.1128/jb.90.3.748-754.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wu C., Clift P., Fry C. H., Henry J. A. Membrane action of chloramphenicol measured by protozoan motility inhibition. Arch Toxicol. 1996;70(12):850–853. doi: 10.1007/s002040050349. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES