Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1994 Dec;98(3):489–493. doi: 10.1111/j.1365-2249.1994.tb05517.x

Circulating monocytes are activated in newly diagnosed type 1 diabetes mellitus patients.

K Josefsen 1, H Nielsen 1, S Lorentzen 1, P Damsbo 1, K Buschard 1
PMCID: PMC1534494  PMID: 7994912

Abstract

Investigations in the BB rat and the non-obese diabetic (NOD) mouse have provided substantial evidence for the involvement of the monocyte/macrophage system in the development of type 1 diabetes mellitus. However, it is not known whether monocytes play the same role in the pathogenesis of human type 1 diabetes. We investigated this problem in a longitudinal study of 29 recent-onset type 1 diabetes mellitus patients. Monocyte chemotaxis, phagocytosis and superoxide production as well as metabolic and haematological parameters were studied immediately after diagnosis and 6 months later. At diagnosis the patients had activated casein and C5a chemotaxis (casein 70 +/- 9 versus 150 +/- 5 (mean +/- s.e.m.), P < 0.001; C5a 137 +/- 10 versus 158 +/- 5, P < 0.05 (activation immobilizes monocytes, reducing the measured values)), and activated superoxide production (3.6 +/- 0.3 versus 3.0 +/- 0.3, P < 0.05). After 6 months casein chemotaxis (115 +/- 16 versus 150 +/- 5, P < 0.05) and Candida phagocytosis (3.3 +/- 0.1 versus 2.8 +/- 0.2, P < 0.001) were still activated. There was no correlation with other clinical or paraclinical parameters. We conclude that the circulating monocytes in newly diagnosed type 1 diabetes patients are activated. It is reasonable to expect that monocytes at the local site of inflammation in pancreas are even further activated. This could play a pathogenic role in beta cell destruction.

Full text

PDF
491

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baek H. S., Yoon J. W. Direct involvement of macrophages in destruction of beta-cells leading to development of diabetes in virus-infected mice. Diabetes. 1991 Dec;40(12):1586–1597. doi: 10.2337/diab.40.12.1586. [DOI] [PubMed] [Google Scholar]
  3. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  4. Campbell I. L., Cutri A., Wilson A., Harrison L. C. Evidence for IL-6 production by and effects on the pancreatic beta-cell. J Immunol. 1989 Aug 15;143(4):1188–1191. [PubMed] [Google Scholar]
  5. Charlton B., Bacelj A., Mandel T. E. Administration of silica particles or anti-Lyt2 antibody prevents beta-cell destruction in NOD mice given cyclophosphamide. Diabetes. 1988 Jul;37(7):930–935. doi: 10.2337/diab.37.7.930. [DOI] [PubMed] [Google Scholar]
  6. Cornell R. P. Reticuloendothelial hyperphagocytosis occurs in streptozotocin-diabetic rats. Studies with colloidal carbon, albumin microaggregates, and soluble fibrin monomers. Diabetes. 1982 Feb;31(2):110–118. doi: 10.2337/diab.31.2.110. [DOI] [PubMed] [Google Scholar]
  7. Geisler C., Almdal T., Bennedsen J., Rhodes J. M., Kølendorf K. Monocyte functions in diabetes mellitus. Acta Pathol Microbiol Immunol Scand C. 1982 Feb;90(1):33–37. doi: 10.1111/j.1699-0463.1982.tb01414.x. [DOI] [PubMed] [Google Scholar]
  8. Hanenberg H., Kolb-Bachofen V., Kantwerk-Funke G., Kolb H. Macrophage infiltration precedes and is a prerequisite for lymphocytic insulitis in pancreatic islets of pre-diabetic BB rats. Diabetologia. 1989 Feb;32(2):126–134. doi: 10.1007/BF00505185. [DOI] [PubMed] [Google Scholar]
  9. Hill H. R., Augustine N. H., Rallison M. L., Santos J. I. Defective monocyte chemotactic responses in diabetes mellitus. J Clin Immunol. 1983 Jan;3(1):70–77. doi: 10.1007/BF00919141. [DOI] [PubMed] [Google Scholar]
  10. Hutchings P., Rosen H., O'Reilly L., Simpson E., Gordon S., Cooke A. Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature. 1990 Dec 13;348(6302):639–642. doi: 10.1038/348639a0. [DOI] [PubMed] [Google Scholar]
  11. Ihm S. H., Lee K. U., Rhee B. D., Min H. K. Initial role of macrophage in the development of anti-beta-cell cellular autoimmunity in multiple low-dose streptozotocin-induced diabetes in mice. Diabetes Res Clin Pract. 1990 Oct;10(2):123–126. doi: 10.1016/0168-8227(90)90033-p. [DOI] [PubMed] [Google Scholar]
  12. Jarpe A. J., Hickman M. R., Anderson J. T., Winter W. E., Peck A. B. Flow cytometric enumeration of mononuclear cell populations infiltrating the islets of Langerhans in prediabetic NOD mice: development of a model of autoimmune insulitis for type I diabetes. Reg Immunol. 1990;3(6):305–317. [PubMed] [Google Scholar]
  13. Kantwerk-Funke G., Burkart V., Kolb H. Low dose streptozotocin causes stimulation of the immune system and of anti-islet cytotoxicity in mice. Clin Exp Immunol. 1991 Nov;86(2):266–270. doi: 10.1111/j.1365-2249.1991.tb05808.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Katz S., Klein B., Elian I., Fishman P., Djaldetti M. Phagocytotic activity of monocytes from diabetic patients. Diabetes Care. 1983 Sep-Oct;6(5):479–482. doi: 10.2337/diacare.6.5.479. [DOI] [PubMed] [Google Scholar]
  15. Kitahara M., Eyre H. J., Lynch R. E., Rallison M. L., Hill H. R. Metabolic activity of diabetic monocytes. Diabetes. 1980 Apr;29(4):251–256. doi: 10.2337/diab.29.4.251. [DOI] [PubMed] [Google Scholar]
  16. Kolb-Bachofen V., Epstein S., Kiesel U., Kolb H. Low-dose streptozocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis before diabetes onset. Diabetes. 1988 Jan;37(1):21–27. doi: 10.2337/diab.37.1.21. [DOI] [PubMed] [Google Scholar]
  17. Kolb-Bachofen V., Schraermeyer U., Hoppe T., Hanenberg H., Kolb H. Diabetes manifestation in BB rats is preceded by pan-pancreatic presence of activated inflammatory macrophages. Pancreas. 1992;7(5):578–584. doi: 10.1097/00006676-199209000-00011. [DOI] [PubMed] [Google Scholar]
  18. Köhler E., Bock U., Knospe S., Michaelis D., Rjasanowski I. Phagocytic activity of blood cells in diabetic risk probands and newly diagnosed type 1 diabetics. Exp Clin Endocrinol. 1988 Aug;91(3):259–264. doi: 10.1055/s-0029-1210756. [DOI] [PubMed] [Google Scholar]
  19. Lee K. U., Amano K., Yoon J. W. Evidence for initial involvement of macrophage in development of insulitis in NOD mice. Diabetes. 1988 Jul;37(7):989–991. doi: 10.2337/diab.37.7.989. [DOI] [PubMed] [Google Scholar]
  20. Lee K. U., Kim M. K., Amano K., Pak C. Y., Jaworski M. A., Mehta J. G., Yoon J. W. Preferential infiltration of macrophages during early stages of insulitis in diabetes-prone BB rats. Diabetes. 1988 Aug;37(8):1053–1058. doi: 10.2337/diab.37.8.1053. [DOI] [PubMed] [Google Scholar]
  21. Lee K. U., Pak C. Y., Amano K., Yoon J. W. Prevention of lymphocytic thyroiditis and insulitis in diabetes-prone BB rats by the depletion of macrophages. Diabetologia. 1988 Jun;31(6):400–402. doi: 10.1007/BF02341511. [DOI] [PubMed] [Google Scholar]
  22. Martin S., Rothe H., Tschöpe D., Schwippert B., Kolb H. Decreased expression of adhesion molecules on monocytes in recent onset IDDM. Immunology. 1991 May;73(1):123–125. [PMC free article] [PubMed] [Google Scholar]
  23. Muir A., Rovin B. H., Lacy P. E., Schreiner G. F. Macrophage-specific chemotactic lipid release by in vivo streptozocin-administered mouse islets. Diabetes. 1991 Nov;40(11):1459–1466. doi: 10.2337/diab.40.11.1459. [DOI] [PubMed] [Google Scholar]
  24. Mølvig J., Pociot F., Baek L., Worsaae H., Dall Wogensen L., Christensen P., Staub-Nielsen L., Mandrup-Poulsen T., Manogue K., Nerup J. Monocyte function in IDDM patients and healthy individuals. Scand J Immunol. 1990 Sep;32(3):297–311. doi: 10.1111/j.1365-3083.1990.tb02924.x. [DOI] [PubMed] [Google Scholar]
  25. Nagy M. V., Chan E. K., Teruya M., Forrest L. E., Likhite V., Charles M. A. Macrophage-mediated islet cell cytotoxicity in BB rats. Diabetes. 1989 Oct;38(10):1329–1331. doi: 10.2337/diab.38.10.1329. [DOI] [PubMed] [Google Scholar]
  26. Nash J. R., Everson N. W., Wood R. F., Bell P. R. Effect of silica and carrageenan on the survival of islet allografts. Transplantation. 1980 Mar;29(3):206–208. doi: 10.1097/00007890-198003000-00008. [DOI] [PubMed] [Google Scholar]
  27. Nielsen H., Olesen Larsen S. Human monocyte chemotaxis in vitro. Influence of in vitro variables in the filter assay. Acta Pathol Microbiol Immunol Scand C. 1983 Apr;91(2):109–115. [PubMed] [Google Scholar]
  28. O'Reilly L. A., Hutchings P. R., Crocker P. R., Simpson E., Lund T., Kioussis D., Takei F., Baird J., Cooke A. Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression. Eur J Immunol. 1991 May;21(5):1171–1180. doi: 10.1002/eji.1830210512. [DOI] [PubMed] [Google Scholar]
  29. Oschilewski M., Schwab E., Kiesel U., Opitz U., Stünkel K., Kolb-Bachofen V., Kolb H. Administration of silica or monoclonal antibody to Thy-1 prevents low-dose streptozotocin-induced diabetes in mice. Immunol Lett. 1986 Jun;12(5-6):289–294. doi: 10.1016/0165-2478(86)90032-5. [DOI] [PubMed] [Google Scholar]
  30. Oschilewski U., Kiesel U., Kolb H. Administration of silica prevents diabetes in BB-rats. Diabetes. 1985 Feb;34(2):197–199. doi: 10.2337/diab.34.2.197. [DOI] [PubMed] [Google Scholar]
  31. Papaccio G., Esposito V. Ultrastructural observations on cytotoxic effector cells infiltrating pancreatic islets of low-dose streptozocin treated mice. Virchows Arch A Pathol Anat Histopathol. 1992;420(1):5–10. doi: 10.1007/BF01605977. [DOI] [PubMed] [Google Scholar]
  32. Papaccio G., Frascatore S., Esposito V., Pisanti F. A. Early macrophage infiltration in mice treated with low-dose streptozocin decreases islet superoxide dismutase levels: prevention by silica pretreatment. Acta Anat (Basel) 1991;142(2):141–146. doi: 10.1159/000147179. [DOI] [PubMed] [Google Scholar]
  33. Rothe H., Fehsel K., Kolb H. Tumour necrosis factor alpha production is upregulated in diabetes prone BB rats. Diabetologia. 1990 Sep;33(9):573–575. doi: 10.1007/BF00404147. [DOI] [PubMed] [Google Scholar]
  34. Seemayer T. A., Tannenbaum G. S., Goldman H., Colle E. Dynamic time course studies of the spontaneously diabetic BB Wistar rat. III. Light-microscopic and ultrastructural observations of pancreatic islets of Langerhans. Am J Pathol. 1982 Feb;106(2):237–249. [PMC free article] [PubMed] [Google Scholar]
  35. Voorbij H. A., Jeucken P. H., Kabel P. J., De Haan M., Drexhage H. A. Dendritic cells and scavenger macrophages in pancreatic islets of prediabetic BB rats. Diabetes. 1989 Dec;38(12):1623–1629. doi: 10.2337/diab.38.12.1623. [DOI] [PubMed] [Google Scholar]
  36. Walker R., Bone A. J., Cooke A., Baird J. D. Distinct macrophage subpopulations in pancreas of prediabetic BB/E rats. Possible role for macrophages in pathogenesis of IDDM. Diabetes. 1988 Sep;37(9):1301–1304. doi: 10.2337/diab.37.9.1301. [DOI] [PubMed] [Google Scholar]
  37. Wright J. R., Jr, Lacy P. E. Silica prevents the induction of diabetes with complete Freund's adjuvant and low-dose streptozotocin in rats. Diabetes Res. 1989 Jun;11(2):51–54. [PubMed] [Google Scholar]
  38. Wu G. Y., Field C. J., Marliss E. B. Glucose and glutamine metabolism in rat macrophages: enhanced glycolysis and unaltered glutaminolysis in spontaneously diabetic BB rats. Biochim Biophys Acta. 1991 Dec 6;1115(2):166–173. doi: 10.1016/0304-4165(91)90026-d. [DOI] [PubMed] [Google Scholar]
  39. Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]
  40. d'Amore F., Wolthers O. D. A study of cell-mediated immunity in type 1 diabetes using an antigen presentation assay. Diabet Med. 1989 Mar;6(2):144–148. doi: 10.1111/j.1464-5491.1989.tb02103.x. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES