Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1990 Feb;79(2):307–313. doi: 10.1111/j.1365-2249.1990.tb05195.x

Activation process of macrophages after in vitro treatment of mouse lymphocytes with dodecylglycerol.

S Homma 1, N Yamamoto 1
PMCID: PMC1534768  PMID: 2178824

Abstract

Alkylglycerols, inflammation products of cancerous membrane lipids, efficiently activate macrophages. A brief in vitro treatment (30 min) of peritoneal cells (mixture of non-adherent and adherent cells) with a small amount (50 ng/ml) of synthetic dodecylglycerol (DDG) resulted in greatly enhanced Fc-receptor-mediated ingestion activity of macrophages. However, treatment of adherent cells (macrophages) alone with DDG produced no significant enhancement of macrophage ingestion activity, implying that macrophage activation requires a contribution of non-adherent cells. DDG-treated non-adherent cells were found to generate a macrophage-activating signal factor. Studies with a serum free-0.1% egg albumin-supplemented RPMI 1640 medium revealed that a serum factor is essential for macrophage activation process. Time course analysis of stepwise transfers of conditioned media of DDG-treated or untreated B cells and T cells revealed that DDG-treated B cells rapidly transmit a factor to untreated T cells which yield the ultimate macrophage-activating factor. This signal transmission among these cells for the macrophage activation process is too rapid to allow time for synthesis of inducible gene products. Thus, we hypothesized that a serum factor is modified by the pre-existing function of DDG-treated B cells and further modified by the pre-existing function of untreated T cells to yield macrophage-activating factor. This hypothesis was confirmed by the demonstration that DDG-treated splenic non-adherent cell ghosts modify a serum factor to yield macrophage-activating factor.

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianco C., Griffin F. M., Jr, Silverstein S. C. Studies of the macrophage complement receptor. Alteration of receptor function upon macrophage activation. J Exp Med. 1975 Jun 1;141(6):1278–1290. doi: 10.1084/jem.141.6.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Constans J., Oksman F., Viau M. Binding of the apo and holo forms of the serum vitamin D-binding protein to human lymphocyte cytoplasm and membrane by indirect immunofluorescence. Immunol Lett. 1981 Aug;3(3):159–162. doi: 10.1016/0165-2478(81)90120-6. [DOI] [PubMed] [Google Scholar]
  4. Galbraith G. M., Galbraith R. M. Metabolic and cytoskeletal modulation of transferrin receptor mobility in mitogen-activated human lymphocytes. Clin Exp Immunol. 1980 Nov;42(2):285–293. [PMC free article] [PubMed] [Google Scholar]
  5. Griffin F. M., Jr, Silverstein S. C. Segmental response of the macrophage plasma membrane to a phagocytic stimulus. J Exp Med. 1974 Feb 1;139(2):323–336. doi: 10.1084/jem.139.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howard B. V., Morris H. P., Bailey J. M. Ether-lipids, -glycerol phosphate dehydrogenase, and growth rate in tumors and cultured cells. Cancer Res. 1972 Jul;32(7):1533–1538. [PubMed] [Google Scholar]
  7. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  8. Machii T., Kimura H., Ueda E., Chujo T., Morita T., Katagiri S., Tagawa S., Kitani T. Distribution of Gc protein (vitamin D binding protein) on the surfaces of normal human lymphocytes and leukemic lymphocytes. Acta Haematol. 1986;75(1):26–29. doi: 10.1159/000206075. [DOI] [PubMed] [Google Scholar]
  9. Nel A. E., Navailles M., Emerson D. L., Goldschmidt-Clermont P., Pathak S. K., Tsang K. Y., Galbraith R. M. Altered configuration of Gc on the plasma membrane of transformed and malignant human B lymphocytes. Clin Immunol Immunopathol. 1985 Nov;37(2):191–202. doi: 10.1016/0090-1229(85)90150-3. [DOI] [PubMed] [Google Scholar]
  10. Ngwenya B. Z., Yamamoto N. Activation of peritoneal macrophages by lysophosphatidylcholine. Biochim Biophys Acta. 1985 Mar 29;839(1):9–15. doi: 10.1016/0304-4165(85)90175-8. [DOI] [PubMed] [Google Scholar]
  11. Ngwenya B. Z., Yamamoto N. Effects of inflammation products on immune systems. Lysophosphatidylcholine stimulates macrophages. Cancer Immunol Immunother. 1986;21(3):174–182. doi: 10.1007/BF00199358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Old L. J. Tumor necrosis factor. Sci Am. 1988 May;258(5):59-60, 69-75. doi: 10.1038/scientificamerican0588-59. [DOI] [PubMed] [Google Scholar]
  13. Petrini M., Emerson D. L., Galbraith R. M. Linkage between surface immunoglobulin and cytoskeleton of B lymphocytes may involve Gc protein. Nature. 1983 Nov 3;306(5938):73–74. doi: 10.1038/306073a0. [DOI] [PubMed] [Google Scholar]
  14. Petrini M., Galbraith R. M., Werner P. A., Emerson D. L., Arnaud P. Gc (vitamin D binding protein) binds to cytoplasm of all human lymphocytes and is expressed on B-cell membranes. Clin Immunol Immunopathol. 1984 May;31(2):282–295. doi: 10.1016/0090-1229(84)90248-4. [DOI] [PubMed] [Google Scholar]
  15. Snyder F., Wood R. Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues. Cancer Res. 1969 Jan;29(1):251–257. [PubMed] [Google Scholar]
  16. Trizio D., Cudkowicz G. Separation of T and B lymphocytes by nylon wool columns: evaluation of efficacy by functional assays in vivo. J Immunol. 1974 Oct;113(4):1093–1097. [PubMed] [Google Scholar]
  17. Tyan M. L., Ness D. B. Mouse blood leukocytes: in vitro primary and secondary responses to two synthetic polypeptides. J Immunol. 1971 Jan;106(1):289–291. [PubMed] [Google Scholar]
  18. Weber N. Metabolism of orally administered rac-1-O-[1'-14C]dodecylglycerol and nutritional effects of dietary rac-1-O-dodecylglycerol in mice. J Lipid Res. 1985 Dec;26(12):1412–1420. [PubMed] [Google Scholar]
  19. Yamamoto N., Ngwenya B. Z. Activation of mouse peritoneal macrophages by lysophospholipids and ether derivatives of neutral lipids and phospholipids. Cancer Res. 1987 Apr 15;47(8):2008–2013. [PubMed] [Google Scholar]
  20. Yamamoto N., Ngwenya B. Z., Sery T. W., Pieringer R. A. Activation of macrophages by ether analogues of lysophospholipids. Cancer Immunol Immunother. 1987;25(3):185–192. doi: 10.1007/BF00199146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yamamoto N., St Claire D. A., Jr, Homma S., Ngwenya B. Z. Activation of mouse macrophages by alkylglycerols, inflammation products of cancerous tissues. Cancer Res. 1988 Nov 1;48(21):6044–6049. [PubMed] [Google Scholar]
  22. Zbar B., Tanaka T. Immunotherapy of cancer: regression of tumors after intralesional injection of living Mycobacterium bovis. Science. 1971 Apr 16;172(3980):271–273. doi: 10.1126/science.172.3980.271. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES