Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1991 Apr;84(1):83–91. doi: 10.1111/j.1365-2249.1991.tb08128.x

Antibody penetration of viable human cells. I. Increased penetration of human lymphocytes by anti-RNP IgG.

J Ma 1, G V Chapman 1, S L Chen 1, G Melick 1, R Penny 1, S N Breit 1
PMCID: PMC1535365  PMID: 1901780

Abstract

Antibody penetration of viable cells and interaction with intracellular antigens may have major consequences for immunopathological processes in connective tissue diseases. We have reported previously that antibody can penetrate viable human lymphocytes. To assess further the role of antinuclear antibodies in this process, peripheral blood lymphocytes (PBMC) were incubated with FITC-conjugated IgG fractions from sera containing anti-RNP (anti-RNP IgG), Ro(SS-A), La(SS-B) and dsDNA antibodies and control sera for 24 h. Using crystal violet to quench cell surface staining, intracellular fluorescence of viable lymphocytes was quantified on the flow cytometer. It was noted that anti-RNP IgG entered 46.4 +/- 7.2% of lymphocytes which was significantly higher than anti-Ro(SS-A) (29.9 +/- 4.1%, P less than 0.05), La(SS-B) (22.0 +/- 7.5%, P less than 0.01) IgG and control IgG (28.8 +/- 2.1%, P less than 0.05) and not statistically different from anti-dsDNA IgG (32.6 +/- 14.3%). Inhibition experiments showed that the increased number of cells penetrated by anti-RNP IgG was a specific process. Time-course studies showed that anti-RNP IgG entry into cells was different from pooled control IgG. With anti-RNP IgG, positive-staining lymphocytes gradually increased in number from 12 to 24 h incubation, whilst with pooled control IgG, the peak was reached within 5 min. Dual staining experiments suggested that whereas both anti-RNP IgG and pooled control IgG entered B and NK cells, anti-RNP IgG also entered T cells. Using IgG F(ab')2 and Fc fragments from either anti-RNP IgG or pooled control IgG to compete with their FITC-conjugated counterparts indicated that the entry of anti-RNP IgG into-viable cells appeared to involve both F(ab')2 and Fc fragments, and pooled control IgG depended exclusively on the Fc portion of IgG. Further investigation by incubating anti-RNP IgG with 35S-methionine-labelled monocyte-depleted PBMC (MD-PBMC) suggested that anti-RNP IgG might react with the corresponding antigens either on the cell surface or within the cytoplasm.

Full text

PDF
86

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarcon-Segovia D., Llorente L., Ruiz-Arguelles A. Antibody penetration into living cells. III. Effect of antiribonucleoprotein IgG on the cell cycle of human peripheral blood mononuclear cells. Clin Immunol Immunopathol. 1982 Apr;23(1):22–33. doi: 10.1016/0090-1229(82)90067-8. [DOI] [PubMed] [Google Scholar]
  2. Alarcon-Segovia D., Ruiz-Arguelles A., Fishbein E. Antibody to nuclear ribonucleoprotein penetrates live human mononuclear cells through Fc receptors. Nature. 1978 Jan 5;271(5640):67–69. doi: 10.1038/271067a0. [DOI] [PubMed] [Google Scholar]
  3. Alarcon-Segovia D., Ruiz-Arguelles A., Llorente L. Antibody penetration into living cells. II. Anti-ribonucleoprotein IgG penetrates into Tgamma lymphocytes causing their deletion and the abrogation of suppressor function. J Immunol. 1979 May;122(5):1855–1862. [PubMed] [Google Scholar]
  4. Alarcón-Segovia D., Llorente L. Antibody penetration into living cells. IV. Different effects of anti-native DNA and anti-ribonucleoprotein IgG on the cell cycle of activated T gamma cells. Clin Exp Immunol. 1983 May;52(2):365–371. [PMC free article] [PubMed] [Google Scholar]
  5. Alarcón-Segovia D., Ruíz-Argüelles A., Fishbein E. Antibody penetration into living cells. I. Intranuclear immunoglobulin in peripheral blood mononuclear cells in mixed connective tissue disease and systemic lupus erythematosus. Clin Exp Immunol. 1979 Mar;35(3):364–375. [PMC free article] [PubMed] [Google Scholar]
  6. Alspaugh M. A., Talal N., Tan E. M. Differentiation and characterization of autoantibodies and their antigens in Sjögren's syndrome. Arthritis Rheum. 1976 Mar-Apr;19(2):216–222. doi: 10.1002/art.1780190214. [DOI] [PubMed] [Google Scholar]
  7. Alspaugh M. A., Tan E. M. Antibodies to cellular antigens in Sjögren's syndrome. J Clin Invest. 1975 May;55(5):1067–1073. doi: 10.1172/JCI108007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Alspaugh M., Maddison P. Resolution of the identity of certain antigen-antibody systems in systemic lupus erythematosus and Sjögren's syndrome: an interlaboratory collaboration. Arthritis Rheum. 1979 Jul;22(7):796–798. doi: 10.1002/art.1780220719. [DOI] [PubMed] [Google Scholar]
  9. Bennett R. M., Gabor G. T., Merritt M. M. DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. J Clin Invest. 1985 Dec;76(6):2182–2190. doi: 10.1172/JCI112226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bernstein R. M., Bunn C. C., Hughes G. R., Francoeur A. M., Mathews M. B. Cellular protein and RNA antigens in autoimmune disease. Mol Biol Med. 1984 Apr;2(2):105–120. [PubMed] [Google Scholar]
  11. Billings P. B., Allen R. W., Jensen F. C., Hoch S. O. Anti-RNP monoclonal antibodies derived from a mouse strain with lupus-like autoimmunity. J Immunol. 1982 Mar;128(3):1176–1180. [PubMed] [Google Scholar]
  12. Chabot B., Steitz J. A. Recognition of mutant and cryptic 5' splice sites by the U1 small nuclear ribonucleoprotein in vitro. Mol Cell Biol. 1987 Feb;7(2):698–707. doi: 10.1128/mcb.7.2.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clark G., Reichlin M., Tomasi T. B., Jr Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythmatosus. J Immunol. 1969 Jan;102(1):117–122. [PubMed] [Google Scholar]
  14. Fisher D. E., Conner G. E., Reeves W. H., Blobel G., Kunkel H. G. Synthesis and assembly of human small nuclear ribonucleoproteins generated by cell-free translation. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6356–6360. doi: 10.1073/pnas.80.20.6356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gabor G., Bennett R. M. Biotin-labelled DNA: a novel approach for the recognition of a DNA binding site on cell membranes. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1034–1039. doi: 10.1016/0006-291x(84)91195-1. [DOI] [PubMed] [Google Scholar]
  16. Galoppin L., Saurat J. H. In vitro study of the binding of antiribonucleoprotein antibodies to the nucleus of isolated living keratinocytes. J Invest Dermatol. 1981 Apr;76(4):264–267. doi: 10.1111/1523-1747.ep12526097. [DOI] [PubMed] [Google Scholar]
  17. Gilliam J. N., Prystowsky S. D. Mixed connective tissue disease syndrome. Arch Dermatol. 1977 May;113(5):583–587. [PubMed] [Google Scholar]
  18. Holers V. M., Kotzin B. L. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies. J Clin Invest. 1985 Sep;76(3):991–998. doi: 10.1172/JCI112100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. LeFeber W. P., Norris D. A., Ryan S. R., Huff J. C., Lee L. A., Kubo M., Boyce S. T., Kotzin B. L., Weston W. L. Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J Clin Invest. 1984 Oct;74(4):1545–1551. doi: 10.1172/JCI111569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lerner M. R., Boyle J. A., Mount S. M., Wolin S. L., Steitz J. A. Are snRNPs involved in splicing? Nature. 1980 Jan 10;283(5743):220–224. doi: 10.1038/283220a0. [DOI] [PubMed] [Google Scholar]
  22. Lerner M. R., Steitz J. A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5495–5499. doi: 10.1073/pnas.76.11.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ma J. A., Chapman G. V., Chen S. L., Penny R., Breit S. N. Flow cytometry with crystal violet to detect intracytoplasmic fluorescence in viable human lymphocytes. Demonstration of antibody entering living cells. J Immunol Methods. 1987 Nov 23;104(1-2):195–200. doi: 10.1016/0022-1759(87)90504-7. [DOI] [PubMed] [Google Scholar]
  24. Mathews M. B., Francoeur A. M. La antigen recognizes and binds to the 3'-oligouridylate tail of a small RNA. Mol Cell Biol. 1984 Jun;4(6):1134–1140. doi: 10.1128/mcb.4.6.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matter L., Schopfer K., Wilhelm J. A., Nyffenegger T., Parisot R. F., De Robertis E. M. Molecular characterization of ribonucleoprotein antigens bound by antinuclear antibodies. A diagnostic evaluation. Arthritis Rheum. 1982 Nov;25(11):1278–1283. doi: 10.1002/art.1780251102. [DOI] [PubMed] [Google Scholar]
  26. Mittal K. K., Mickey M. R., Singal D. P., Terasaki P. I. Serotyping for homotransplantation. 18. Refinement of microdroplet lymphocyte cytotoxicity test. Transplantation. 1968 Nov;6(8):913–927. doi: 10.1097/00007890-196811000-00006. [DOI] [PubMed] [Google Scholar]
  27. Moyer M. P. The association of DNA and RNA with membranes. Int Rev Cytol. 1979;61:1–61. doi: 10.1016/s0074-7696(08)61994-4. [DOI] [PubMed] [Google Scholar]
  28. Okudaira K., Yoshizawa H., Williams R. C., Jr Monoclonal murine anti-DNA antibody interacts with living mononuclear cells. Arthritis Rheum. 1987 Jun;30(6):669–678. doi: 10.1002/art.1780300610. [DOI] [PubMed] [Google Scholar]
  29. Pettersson I., Hinterberger M., Mimori T., Gottlieb E., Steitz J. A. The structure of mammalian small nuclear ribonucleoproteins. Identification of multiple protein components reactive with anti-(U1)ribonucleoprotein and anti-Sm autoantibodies. J Biol Chem. 1984 May 10;259(9):5907–5914. [PubMed] [Google Scholar]
  30. Reeves W. H., Fisher D. E., Wisniewolski R., Gottlieb A. B., Chiorazzi N. Psoriasis and Raynaud's phenomenon associated with autoantibodies to U1 and U2 small nuclear ribonucleoproteins. N Engl J Med. 1986 Jul 10;315(2):105–111. doi: 10.1056/NEJM198607103150207. [DOI] [PubMed] [Google Scholar]
  31. Rekvig O. P., Hannestad K. The specificity of human autoantibodies that react with both cell nuclei and plasma membranes: the nuclear antigen is present on core mononucleosomes. J Immunol. 1979 Dec;123(6):2673–2681. [PubMed] [Google Scholar]
  32. Sharp G. C., Irvin W. S., Tan E. M., Gould R. G., Holman H. R. Mixed connective tissue disease--an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). Am J Med. 1972 Feb;52(2):148–159. doi: 10.1016/0002-9343(72)90064-2. [DOI] [PubMed] [Google Scholar]
  33. Sharp G. C. Mixed connective tissue disease. Bull Rheum Dis. 1974;25(9):828–831. [PubMed] [Google Scholar]
  34. Stefano J. E. Purified lupus antigen La recognizes an oligouridylate stretch common to the 3' termini of RNA polymerase III transcripts. Cell. 1984 Jan;36(1):145–154. doi: 10.1016/0092-8674(84)90083-7. [DOI] [PubMed] [Google Scholar]
  35. Tan E. M., Kunkel H. G. Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J Immunol. 1966 Mar;96(3):464–471. [PubMed] [Google Scholar]
  36. Wolin S. L., Steitz J. A. The Ro small cytoplasmic ribonucleoproteins: identification of the antigenic protein and its binding site on the Ro RNAs. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1996–2000. doi: 10.1073/pnas.81.7.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zieve G., Penman S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell. 1976 May;8(1):19–31. doi: 10.1016/0092-8674(76)90181-1. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES