Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1991 Jan;83(1):157–162. doi: 10.1111/j.1365-2249.1991.tb05607.x

Characterization of immune inducer and suppressor macrophages from the normal human lung.

M A Spiteri 1, L W Poulter 1
PMCID: PMC1535468  PMID: 1824832

Abstract

Monoclonal antibodies (MoAbs) that are able to discriminate between dendritic cells (MoAb RFD1+) and mature macrophages (MoAb RFD7+) in normal tissues were used in combination with density separation techniques to isolate relatively homogeneous subpopulations of macrophages from human bronchoalveolar lavage (BAL). A characterization of surface antigen expression, and functional capacity was then carried out on each isolated alveolar macrophage (AM) subset. One population with the phenotype RFD1+RFD7- obtained from the non-adherent cell pool showed the characteristics of antigen-presenting cells having absent or poor expression of Fc and C3b receptors, a low content of lysozomal hydrolase and poor phagocytic capacity. This population strongly stimulated T lymphocytes in allogeneic mixed lymphocyte reactions (MLR). A second AM population, isolated by adherence and density centrifugation expressed the phenotype RFD1+RFD7+. These cells showed the same phenotypic characteristics of mature macrophages with strong expression of C3b and Fc receptors, and marked phagocytic capacity. Such AM were very poor stimulators of allogeneic MLR. Under certain circumstances the RFD1+RFD7+ cells were shown to actively repress the stimulatory capacity of the RFD1+RFD7- subpopulation. These results suggest that variations within the functional capacity of AM subsets may be capable of influencing the strength of acquired T cell immune responses of the lung.

Full text

PDF
160

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainslie G. M., Poulter L. W., du Bois R. M. Relation between immunocytological features of bronchoalveolar lavage fluid and clinical indices in sarcoidosis. Thorax. 1989 Jun;44(6):501–509. doi: 10.1136/thx.44.6.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allison M. C., Cornwall S., Poulter L. W., Dhillon A. P., Pounder R. E. Macrophage heterogeneity in normal colonic mucosa and in inflammatory bowel disease. Gut. 1988 Nov;29(11):1531–1538. doi: 10.1136/gut.29.11.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumgartner I., Scheiner O., Holzinger C., Boltz-Nitulescu G., Klech H., Lassmann H., Rumpold H., Förster O., Kraft D. Expression of the VEP13 antigen (CD16) on native human alveolar macrophages and cultured blood monocytes. Immunobiology. 1988 Jul;177(3):317–326. doi: 10.1016/S0171-2985(88)80050-0. [DOI] [PubMed] [Google Scholar]
  4. Brannen A. L., Chandler D. B. Alveolar macrophage subpopulations' responsiveness to chemotactic stimuli. Am J Pathol. 1988 Jul;132(1):161–166. [PMC free article] [PubMed] [Google Scholar]
  5. Campbell D. A., Poulter L. W., Du Bois R. M. Phenotypic analysis of alveolar macrophages in normal subjects and in patients with interstitial lung disease. Thorax. 1986 Jun;41(6):429–434. doi: 10.1136/thx.41.6.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dougherty G. J., Selvendran Y., Murdoch S., Palmer D. G., Hogg N. The human mononuclear phagocyte high-affinity Fc receptor, FcRI, defined by a monoclonal antibody, 10.1. Eur J Immunol. 1987 Oct;17(10):1453–1459. doi: 10.1002/eji.1830171011. [DOI] [PubMed] [Google Scholar]
  7. Ettensohn D. B., Duncan P. G., Jankowski M. J. The role of human alveolar macrophages in the allogeneic and autologous mixed leucocyte reactions. Clin Exp Immunol. 1989 Mar;75(3):432–437. [PMC free article] [PubMed] [Google Scholar]
  8. Evans R. Macrophages and the tumour bearing host. Br J Cancer Suppl. 1973 Aug;1:19–25. [PMC free article] [PubMed] [Google Scholar]
  9. Ferro T. J., Monos D. S., Spear B. T., Rossman M. D., Zmijewski C. M., Kamoun M., Daniele R. P. Carbohydrate differences in HLA-DR molecules synthesized by alveolar macrophages and blood monocytes. Am Rev Respir Dis. 1987 Jun;135(6):1340–1344. doi: 10.1164/arrd.1987.135.6.1340. [DOI] [PubMed] [Google Scholar]
  10. Gerdes J., Naiem M., Mason D. Y., Stein H. Human complement (C3b) receptors defined by a mouse monoclonal antibody. Immunology. 1982 Apr;45(4):645–653. [PMC free article] [PubMed] [Google Scholar]
  11. Giri J. G., Kincade P. W., Mizel S. B. Interleukin 1-mediated induction of kappa-light chain synthesis and surface immunoglobulin expression on pre-B cells. J Immunol. 1984 Jan;132(1):223–228. [PubMed] [Google Scholar]
  12. Gordon S., Keshav S., Chung L. P. Mononuclear phagocytes: tissue distribution and functional heterogeneity. Curr Opin Immunol. 1988 Sep-Oct;1(1):26–35. doi: 10.1016/0952-7915(88)90047-7. [DOI] [PubMed] [Google Scholar]
  13. Hogg N., MacDonald S., Slusarenko M., Beverley P. C. Monoclonal antibodies specific for human monocytes, granulocytes and endothelium. Immunology. 1984 Dec;53(4):753–767. [PMC free article] [PubMed] [Google Scholar]
  14. Holt P. G., Degebrodt A., O'Leary C., Krska K., Plozza T. T cell activation by antigen-presenting cells from lung tissue digests: suppression by endogenous macrophages. Clin Exp Immunol. 1985 Dec;62(3):586–593. [PMC free article] [PubMed] [Google Scholar]
  15. Holt P. G., Schon-Hegrad M. A., Oliver J. MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations. J Exp Med. 1988 Feb 1;167(2):262–274. doi: 10.1084/jem.167.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Janossy G., Bofill M., Poulter L. W., Rawlings E., Burford G. D., Navarrete C., Ziegler A., Kelemen E. Separate ontogeny of two macrophage-like accessory cell populations in the human fetus. J Immunol. 1986 Jun 15;136(12):4354–4361. [PubMed] [Google Scholar]
  17. Johnston R. B., Jr Current concepts: immunology. Monocytes and macrophages. N Engl J Med. 1988 Mar 24;318(12):747–752. doi: 10.1056/NEJM198803243181205. [DOI] [PubMed] [Google Scholar]
  18. Kelly P. M., Bliss E., Morton J. A., Burns J., McGee J. O. Monoclonal antibody EBM/11: high cellular specificity for human macrophages. J Clin Pathol. 1988 May;41(5):510–515. doi: 10.1136/jcp.41.5.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kradin R. L., Zhu Y., Hales C. A., Bianco C., Colvin R. B. Response of pulmonary macrophages to hyperoxic pulmonary injury. Acquisition of surface fibronectin and fibrin/ogen and enhanced expression of a fibronectin receptor. Am J Pathol. 1986 Nov;125(2):349–357. [PMC free article] [PubMed] [Google Scholar]
  20. Krensky A. M., Sanchez-Madrid F., Robbins E., Nagy J. A., Springer T. A., Burakoff S. J. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J Immunol. 1983 Aug;131(2):611–616. [PubMed] [Google Scholar]
  21. LOJDA Z., VECEREK B., PELICHOVA H. SOME REMARKS CONCERNING THE HISTOCHEMICAL DETECTION OF ACID PHOSPHATASE BY AZO-COUPLING REACTIONS. Z Zellforch Microsk Anat Histochem. 1964 Jan 31;48:428–454. doi: 10.1007/BF00736421. [DOI] [PubMed] [Google Scholar]
  22. Munro C. S., Campbell D. A., Collings L. A., Poulter L. W. Monoclonal antibodies distinguish macrophages and epithelioid cells in sarcoidosis and leprosy. Clin Exp Immunol. 1987 May;68(2):282–287. [PMC free article] [PubMed] [Google Scholar]
  23. Nakstad B., Lyberg T., Skjörten F., Boye N. P. Subpopulations of human lung alveolar macrophages: ultrastructural features. Ultrastruct Pathol. 1989 Jan-Feb;13(1):1–13. doi: 10.3109/01913128909051155. [DOI] [PubMed] [Google Scholar]
  24. Poulter L. W., Campbell D. A., Munro C., Janossy G. Discrimination of human macrophages and dendritic cells by means of monoclonal antibodies. Scand J Immunol. 1986 Sep;24(3):351–357. doi: 10.1111/j.1365-3083.1986.tb02104.x. [DOI] [PubMed] [Google Scholar]
  25. Poulter L. W., Rook G. A., Steele J., Condez A. Influence of 1,25-(OH)2 vitamin D3 and gamma interferon on the phenotype of human peripheral blood monocyte-derived macrophages. Infect Immun. 1987 Sep;55(9):2017–2020. doi: 10.1128/iai.55.9.2017-2020.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sandron D., Reynolds H. Y., Laval A. M., Venet A., Israel-Biet D., Chretien J. Human alveolar macrophage subpopulations isolated on discontinuous albumin gradients. Cytological data in normals and sarcoid patients. Eur J Respir Dis. 1986 Mar;68(3):177–185. [PubMed] [Google Scholar]
  27. Spiteri M. A., Clarke S. W., Poulter L. W. Phenotypic and functional changes in alveolar macrophages contribute to the pathogenesis of pulmonary sarcoidosis. Clin Exp Immunol. 1988 Dec;74(3):359–364. [PMC free article] [PubMed] [Google Scholar]
  28. Spiteri M. A., Newman S. P., Clarke S. W., Poulter L. W. Inhaled corticosteroids can modulate the immunopathogenesis of pulmonary sarcoidosis. Eur Respir J. 1989 Mar;2(3):218–224. [PubMed] [Google Scholar]
  29. Takemura R., Werb Z. Secretory products of macrophages and their physiological functions. Am J Physiol. 1984 Jan;246(1 Pt 1):C1–C9. doi: 10.1152/ajpcell.1984.246.1.C1. [DOI] [PubMed] [Google Scholar]
  30. Unanue E. R., Allen P. M. The basis for the immunoregulatory role of macrophages and other accessory cells. Science. 1987 May 1;236(4801):551–557. doi: 10.1126/science.2437650. [DOI] [PubMed] [Google Scholar]
  31. Zwilling B. S., Campolito L. B., Reiches N. A. Alveolar macrophage subpopulations identified by differential centrifugation on a discontinuous albumin density gradient. Am Rev Respir Dis. 1982 Apr;125(4):448–452. doi: 10.1164/arrd.1982.125.4.448. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES