Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1981 Feb;43(2):231–239.

In vivo generation and clearance of soluble immune complexes containing IgM antibodies in normal and decomplemented rabbits.

D L Brown, G D Harkiss
PMCID: PMC1537278  PMID: 6974064

Abstract

Soluble immune complexes containing IgM antibodies (IgM.IC) were generated in vivo utilizing a passive induction model, whereby purified antibodies were injected into rabbits with circulating radiolabelled bovine serum albumin (BSA) as antigen. A triphasic response was obtained consisting of an initial rapid elimination of TCA-precipitable antigen in the first 30 min, followed by a progressive diminution in the clearance velocity as antigen from the tissues moved back into the circulation to re-equilibrate, and subsequent elimination of the antigen at a rate close to that of free BSA. The dynamics of IC formation and disappearance were studied by a combination of Farr assay and solid-phase C1q binding. The results show that the rate of clearance decreased as the complexes progressively moved into antigen excess, and that the decrease in the proportion of complexed antigen was mirrored by a similar decrease in the ability of the complexes to bind C1q. Depletion of complement by treatment with cobra venom factor did not inhibit the clearance of the antigen, but may have inhibited solubilization of the complexes in vivo. Tissue localization experiments indicated that the liver is the organ predominantly involved in the uptake and catabolism of in vivo-generated IgM.IC. These results show that the clearance velocity of soluble IgM.IC is critically dependent on the antigen/antibody ratio, and that clearance is mediated via a C3b-independent mechanism in the RES.

Full text

PDF
234

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arend W. P., Mannik M. Studies on antigen-antibody complexes. II. Quantification of tissue uptake of soluble complexes in normal and complement-depleted rabbits. J Immunol. 1971 Jul;107(1):63–75. [PubMed] [Google Scholar]
  2. Bartolotti S. R., Peters D. K. Delayed removal of renal-bound antigen in decomplemented rabbits with acute serum sickness. Clin Exp Immunol. 1978 May;32(2):199–206. [PMC free article] [PubMed] [Google Scholar]
  3. Cochrane C. G., Koffler D. Immune complex disease in experimental animals and man. Adv Immunol. 1973;16(0):185–264. doi: 10.1016/s0065-2776(08)60298-9. [DOI] [PubMed] [Google Scholar]
  4. Couser W. G., Salant D. J. In situ immune complex formation and glomerular injury. Kidney Int. 1980 Jan;17(1):1–13. doi: 10.1038/ki.1980.1. [DOI] [PubMed] [Google Scholar]
  5. Czop J., Nussenzweig V. Studies on the mechanism of solubilization of immune precipitates by serum. J Exp Med. 1976 Mar 1;143(3):615–630. doi: 10.1084/jem.143.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Day J. F., Thornburg R. W., Thorpe S. R., Baynes J. W. Carbohydrate-mediated clearance of antibody . antigen complexes from the circulation. The role of high mannose oligosaccharides in the hepatic uptake of IgM . antigen complexes. J Biol Chem. 1980 Mar 25;255(6):2360–2365. [PubMed] [Google Scholar]
  7. Frank M. M., Hamburger M. I., Lawley T. J., Kimberly R. P., Plotz P. H. Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. N Engl J Med. 1979 Mar 8;300(10):518–523. doi: 10.1056/NEJM197903083001002. [DOI] [PubMed] [Google Scholar]
  8. Germuth F. G., Jr, Rodriguez E., Lorelle C. A., Trump E. I., Milano L. L., Wise O. Passive immune complex glomerulonephritis in mice: models for various lesions found in human disease. II. Low avidity complexes and diffuse proliferative glomerulonephritis with subepithelial deposits. Lab Invest. 1979 Oct;41(4):366–371. [PubMed] [Google Scholar]
  9. Germuth F. G., Jr, Rodriguez E., Lorelle C. A., Trump E. I., Milano L., Wise O. Passive immune complex glomerulonephritis in mice: models for various lesions found in human disease. I. High avidity complexes and mesangiopathic glomerulonephritis. Lab Invest. 1979 Oct;41(4):360–365. [PubMed] [Google Scholar]
  10. Haakenstad A. O., Case J. B., Mannik M. Effect of cortisone on the disappearance kinetics and tissue localization of soluble immune complexes. J Immunol. 1975 Apr;114(4):1153–1160. [PubMed] [Google Scholar]
  11. Haakenstad A. O., Mannik M. Saturation of the reticuloendothelial system with soluble immune complexes. J Immunol. 1974 May;112(5):1939–1948. [PubMed] [Google Scholar]
  12. Haegert D. G. Phagocytic peripheral blood monocytes from rabbits and humans express membrane receptors specific for IgM molecules: evidence that incubation with neuraminidase exposes cryptic IgM (Fc) receptors. Clin Exp Immunol. 1979 Mar;35(3):484–490. [PMC free article] [PubMed] [Google Scholar]
  13. Kijlstra A., Van Der Lelij A., Knutson W., Fleuren G. J., Vanes L. A. The influence of phagocyte function on glomerular localization of aggregated IgM in rats. Clin Exp Immunol. 1978 May;32(2):207–217. [PMC free article] [PubMed] [Google Scholar]
  14. Knutson D. W., Kijlstra A., Van Es L. A. Association and dissociation of aggregated IgG from rat peritoneal macrophages. J Exp Med. 1977 May 1;145(5):1368–1381. doi: 10.1084/jem.145.5.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lay W. H., Nussenzweig V. Ca++-dependent binding of antigen-19 S antibody complexes to macrophages. J Immunol. 1969 May;102(5):1172–1178. [PubMed] [Google Scholar]
  16. Mannik M., Arend M. P., Hall A. P., Gilliland B. C. Studies on antigen-antibody complexes. I. Elimination of soluble complexes from rabbit circulation. J Exp Med. 1971 Apr 1;133(4):713–739. doi: 10.1084/jem.133.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  18. Miller G. W., Nussenzweig V. A new complement function: solubilization of antigen-antibody aggregates. Proc Natl Acad Sci U S A. 1975 Feb;72(2):418–422. doi: 10.1073/pnas.72.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mizoguchi Y., Tanimoto K., Yue C. L., Horiuchi Y. Immune receptors (IgG-Fc and complement receptors) in normal human organs. Lab Invest. 1979 Jun;40(6):703–707. [PubMed] [Google Scholar]
  20. TORRIGIANI G., ROITT I. M. THE ENHANCEMENT OF 19S ANTIBODY PRODUCTION BY PARTICULATE ANTIGEN. J Exp Med. 1965 Jul 1;122:181–193. doi: 10.1084/jem.122.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takahashi M., Takahashi S., Brade V., Nussenzweig V. Requirements for the solubilization of immune aggregates by complement. The role of the classical pathway. J Clin Invest. 1978 Aug;62(2):349–358. doi: 10.1172/JCI109135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Snick J. L., Van Roost E., Markowetz B., Cambiaso C. L., Masson P. L. Enhancement by IgM rheumatoid factor of in vitro ingestion by macrophages and in vivo clearance of aggregated IgG or antigen-antibody complexes. Eur J Immunol. 1978 Apr;8(4):279–285. doi: 10.1002/eji.1830080412. [DOI] [PubMed] [Google Scholar]
  23. WEIGLE W. O. Elimination of antigen-antibody complexes from sera of rabbits. J Immunol. 1958 Sep;81(3):204–213. [PubMed] [Google Scholar]
  24. Yonemasu K., Stroud R. M. Clq: rapid purification method for preparation of monospecific antisera and for biochemical studies. J Immunol. 1971 Feb;106(2):304–313. [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES