Skip to main content
British Medical Journal (Clinical Research Ed.) logoLink to British Medical Journal (Clinical Research Ed.)
. 1983 Sep 3;287(6393):631–634. doi: 10.1136/bmj.287.6393.631

Measurement of digitalis-like compound in plasma: application in studies of essential hypertension.

M A Devynck, M G Pernollet, J B Rosenfeld, P Meyer
PMCID: PMC1548804  PMID: 6309318

Abstract

A digitalis-like compound was detected in human plasma by tritiated ouabain competition binding to the sodium pump. The study comprised analyses of plasma extracts from 17 normal controls, 17 normotensive subjects with one or both parents hypertensive, and 16 patients with untreated essential hypertension. In two thirds of the untreated hypertensive and several of the normotensive subjects with a family history of hypertension the potency of the digitalis-like compound, as measured by its interference with ouabain binding, was significantly greater than in the controls. In the untreated hypertensive patients the potency of the compound was significantly correlated with the urinary sodium output. Measurement of this salt-related, digitalis-like compound may be useful in clinical studies of hypertension.

Full text

PDF
633

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosioni E., Costa F. V., Montebugnoli L., Tartagni F., Magnani B. Increased intralymphocytic sodium content in essential hypertension: an index of impaired Na+ cellular metabolism. Clin Sci (Lond) 1981 Aug;61(2):181–186. doi: 10.1042/cs0610181. [DOI] [PubMed] [Google Scholar]
  2. Cantley L. C., Jr, Cantley L. G., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem. 1978 Oct 25;253(20):7361–7368. [PubMed] [Google Scholar]
  3. Clarkson E. M., Raw S. M., De Wardener H. E. Further observations on a low-molecular-weight natriuretic substance in the urine of normal man. Kidney Int. 1979 Dec;16(6):710–721. doi: 10.1038/ki.1979.187. [DOI] [PubMed] [Google Scholar]
  4. De Luise M., Blackburn G. L., Flier J. S. Reduced activity of the red-cell sodium-potassium pump in human obesity. N Engl J Med. 1980 Oct 30;303(18):1017–1022. doi: 10.1056/NEJM198010303031801. [DOI] [PubMed] [Google Scholar]
  5. Edmondson R. P., Thomas R. D., Hilton P. J., Patrick J., Jones N. F. Abnormal leucocyte composition and sodium transport in essential hypertension. Lancet. 1975 May 3;1(7914):1003–1005. doi: 10.1016/s0140-6736(75)91947-9. [DOI] [PubMed] [Google Scholar]
  6. Fishman M. C. Endogenous digitalis-like activity in mammalian brain. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4661–4663. doi: 10.1073/pnas.76.9.4661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
  8. Gonick H. C., Kramer H. J., Paul W., Lu E. Circulating inhibitor of sodium-potassium-activated adenosine triphosphatase after expansion of extracellular fluid volume in rats. Clin Sci Mol Med. 1977 Oct;53(4):329–334. doi: 10.1042/cs0530329. [DOI] [PubMed] [Google Scholar]
  9. Gruber K. A., Rudel L. L., Bullock B. C. Increased circulating levels of an endogenous digoxin-like factor in hypertensive monkeys. Hypertension. 1982 May-Jun;4(3):348–354. doi: 10.1161/01.hyp.4.3.348. [DOI] [PubMed] [Google Scholar]
  10. Gruber K. A., Whitaker J. M., Buckalew V. M., Jr Endogenous digitalis-like substance in plasma of volume-expanded dogs. Nature. 1980 Oct 23;287(5784):743–745. doi: 10.1038/287743a0. [DOI] [PubMed] [Google Scholar]
  11. Haddy F. J., Pamnani M. B., Clough D. L. Humoral factors and the sodium-potassium pump in volume expanded hypertension. Life Sci. 1979 Jun 4;24(23):2105–2117. doi: 10.1016/0024-3205(79)90108-5. [DOI] [PubMed] [Google Scholar]
  12. Hamlyn J. M., Ringel R., Schaeffer J., Levinson P. D., Hamilton B. P., Kowarski A. A., Blaustein M. P. A circulating inhibitor of (Na+ + K+)ATPase associated with essential hypertension. Nature. 1982 Dec 16;300(5893):650–652. doi: 10.1038/300650a0. [DOI] [PubMed] [Google Scholar]
  13. Haupert G. T., Jr, Sancho J. M. Sodium transport inhibitor from bovine hypothalamus. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4658–4660. doi: 10.1073/pnas.76.9.4658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heagerty A. M., Milner M., Bing R. F., Thurston H., Swales J. D. Leucocyte membrane sodium transport in normotensive populations: dissociation of abnormalities of sodium efflux from raised blood-pressure. Lancet. 1982 Oct 23;2(8304):894–896. doi: 10.1016/s0140-6736(82)90865-0. [DOI] [PubMed] [Google Scholar]
  15. Kramer H. J. Natriuretic hormone - a circulating inhibitor of sodium- and potassium-activated adenosine triphosphatase. Its potential role in body fluid and blood pressure regulation. Klin Wochenschr. 1981 Nov 16;59(22):1225–1230. doi: 10.1007/BF01747753. [DOI] [PubMed] [Google Scholar]
  16. Licht A., Stein S., McGregor C. W., Bourgoignie J. J., Bricker N. S. Progress in isolation and purification of an inhibitor of sodium transport obtained from dog urine. Kidney Int. 1982 Feb;21(2):339–344. doi: 10.1038/ki.1982.27. [DOI] [PubMed] [Google Scholar]
  17. Lichtstein D., Samuelov S. Membrane potential changes induced by the ouabain-like compound extracted from mammalian brain. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1453–1456. doi: 10.1073/pnas.79.5.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacGregor G. A., Fenton S., Alaghband-Zadeh J., Markandu N., Roulston J. E., de Wardener H. E. Evidence for a raised concentration of a circulating sodium transport inhibitor in essential hypertension. Br Med J (Clin Res Ed) 1981 Nov 21;283(6303):1355–1357. doi: 10.1136/bmj.283.6303.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
  20. Myers T. D., Boerth R. C., Post R. L. Effects of vanadate on ouabain binding and inhibition of (Na+ + K+)-ATPase. Biochim Biophys Acta. 1979 Nov 16;558(1):99–107. doi: 10.1016/0005-2736(79)90318-3. [DOI] [PubMed] [Google Scholar]
  21. Parker J. C., Welt L. G. Pathological alterations of cation movements in red blood cells. Arch Intern Med. 1972 Feb;129(2):320–332. [PubMed] [Google Scholar]
  22. Postnov Y. V., Orlov S. N., Shevchenko A., Adler A. M. Altered sodium permeability, calcium binding and Na-K-ATPase activity in the red blood cell membrane in essential hypertension. Pflugers Arch. 1977 Nov 23;371(3):263–269. doi: 10.1007/BF00586267. [DOI] [PubMed] [Google Scholar]
  23. Raghavan S. R., Gonick H. C. Partial purification and characterization of natriuretic factor from rat kidney. Proc Soc Exp Biol Med. 1980 May;164(1):101–104. doi: 10.3181/00379727-164-40831. [DOI] [PubMed] [Google Scholar]
  24. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  25. Wambach G., Helber A. Na-K-ATPase in erythrocyte ghosts is not a marker for primary hypertension. Clin Exp Hypertens. 1981;3(4):663–673. doi: 10.3109/10641968109033692. [DOI] [PubMed] [Google Scholar]
  26. Wiley J. S., Ellory J. C., Shuman M. A., Shaller C. C., Cooper R. A. Characteristics of the membrane defect in the hereditary stomatocytosis syndrome. Blood. 1975 Sep;46(3):337–356. [PubMed] [Google Scholar]
  27. de Wardener H. E., MacGregor G. A., Clarkson E. M., Alaghband-Zadeh J., Bitensky L., Chayen J. Effect of sodium intake on ability of human plasma to inhibit renal Na+-K+-adenosine triphosphatase in vitro. Lancet. 1981 Feb 21;1(8217):411–413. doi: 10.1016/s0140-6736(81)91792-x. [DOI] [PubMed] [Google Scholar]

Articles from British Medical Journal (Clinical research ed.) are provided here courtesy of BMJ Publishing Group

RESOURCES