Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1973 Feb;13(2):213–223.

Reconstitution of immunocompetence in B cells by addition of concanavalin A or concanavalin A-treated thymus cells

O Sjöberg, G Möller, J Andersson
PMCID: PMC1553715  PMID: 4571212

Abstract

The effect of soluble Concanavalin A (Con A) on the primary antibody response in vitro against sheep red cells (SRC) by mouse spleen cells was studied. Stimulation of normal spleen cells with Con A caused a slight increase of the background number of plaque-forming cells (PFC). Cultures stimulated with SRC did not show an increased PFC response after Con A treatment, except in experiments where the PFC response against SRC was rather low in the absence of Con A. Concentrations of Con A higher than 0·5 μg/ml were inhibitory to the immune response of SRC-treated cultures also early during the culture period. In contrast, T cell depleted spleen cultures, incapable by themselves to respond to SRC, were reconstituted by addition of Con A at concentrations of 0·5 μg/ml or more. Presumably, residual T cells were activated by Con A. Con A activated T cells could reconstitute the PFC response in T cell-deficient cultures. In contrast, it was not possible to obtain more than a marginal stimulation of the antibody response in cultures of spleen cells depleted of adherent cells by addition of soluble Con A or Con A-activated thymocytes.

The results suggest that Con A may stimulate the antibody response by activation of T cells, and support the concept that activated T cells can non-specifically stimulate the antibody response of B cells. Large numbers of activated T cells were inhibitory to the immune response and it is suggested that this phenomenon is analagous to antigenic competition. Furthermore, activated T cells do not seem capable of substituting for adherent cells in the primary immune response in vitro, suggesting that adherent cells are important for the functions of B cells.

Full text

PDF
213

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson J., Möller G., Sjöberg O. Selective induction of DNA synthesis in T and B lymphocytes. Cell Immunol. 1972 Aug;4(4):381–393. doi: 10.1016/0008-8749(72)90040-8. [DOI] [PubMed] [Google Scholar]
  2. Andersson J., Möller G., Sjöberg O. Selective induction of DNA synthesis in T and B lymphocytes. Cell Immunol. 1972 Aug;4(4):381–393. doi: 10.1016/0008-8749(72)90040-8. [DOI] [PubMed] [Google Scholar]
  3. Andersson J., Sjöberg O., Möller G. Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides. Eur J Immunol. 1972 Aug;2(4):349–353. doi: 10.1002/eji.1830020410. [DOI] [PubMed] [Google Scholar]
  4. Bretscher P., Cohn M. A theory of self-nonself discrimination. Science. 1970 Sep 11;169(3950):1042–1049. doi: 10.1126/science.169.3950.1042. [DOI] [PubMed] [Google Scholar]
  5. Britton S. When allogeneic mouse spleen cells are mixed in vitro the T-cells secrete a product which guides the maturation of B-cells. Scand J Immunol. 1972;1(1):89–98. doi: 10.1111/j.1365-3083.1972.tb03738.x. [DOI] [PubMed] [Google Scholar]
  6. Chan E. L., Mishell R. I., Mitchell G. F. Cell interaction in an immune response in vitro: requirement for theta-carrying cells. Science. 1970 Dec 11;170(3963):1215–1217. doi: 10.1126/science.170.3963.1215. [DOI] [PubMed] [Google Scholar]
  7. Cohen A., Schlesinger M. Absorption of guinea pig serum with agar. A method for elimination of itscytotoxicity for murine thymus cells. Transplantation. 1970 Jul;10(1):130–132. doi: 10.1097/00007890-197007000-00027. [DOI] [PubMed] [Google Scholar]
  8. Feldmann M., Basten A. Specific collaboration between T and B lymphocytes across a cell impermeable membrane in vitro. Nat New Biol. 1972 May 3;237(70):13–15. doi: 10.1038/newbio237013a0. [DOI] [PubMed] [Google Scholar]
  9. Feldmann M., Easten A. The relationship between antigenic structure and the requirement for thymus-derived cells in the immune response. J Exp Med. 1971 Jul 1;134(1):103–119. doi: 10.1084/jem.134.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hersh E. M., Harris J. E. Macrophage-lymphocyte interaction in the antigen-induced blastogenic response of human peripheral blood leukocytes. J Immunol. 1968 Jun;100(6):1184–1194. [PubMed] [Google Scholar]
  11. JERNE N. K., NORDIN A. A. Plaque formation in agar by single antibody-producing cells. Science. 1963 Apr 26;140(3565):405–405. [PubMed] [Google Scholar]
  12. Janossy G., Greaves M. F. Lymphocyte activation. I. Response of T and B lymphocytes to phytomitogens. Clin Exp Immunol. 1971 Oct;9(4):483–498. [PMC free article] [PubMed] [Google Scholar]
  13. Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten antibody responses. 3. Stimulation of antibody synthesis and facilitation of hapten-specific secondary antibody responses by graft-versus-host reactions. J Exp Med. 1971 Feb 1;133(2):169–186. doi: 10.1084/jem.133.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kreth H. W., Williamson A. R. Cell surveillance model for lymphocyte cooperation. Nature. 1971 Dec 24;234(5330):454–456. doi: 10.1038/234454a0. [DOI] [PubMed] [Google Scholar]
  15. Lachmann P. J. Lymphocyte cooperation. Proc R Soc Lond B Biol Sci. 1971 Jan 12;176(1045):425–426. doi: 10.1098/rspb.1971.0005. [DOI] [PubMed] [Google Scholar]
  16. Miller J. F., Mitchell G. F. Thymus and antigen-reactive cells. Transplant Rev. 1969;1:3–42. doi: 10.1111/j.1600-065x.1969.tb00135.x. [DOI] [PubMed] [Google Scholar]
  17. Miller J. F., Sprent J. Thymus-derived cells in mouse thoracic duct lymph. Nat New Biol. 1971 Apr 28;230(17):267–270. doi: 10.1038/newbio230267a0. [DOI] [PubMed] [Google Scholar]
  18. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mosier D. E. A requirement for two cell types for antibody formation in vitro. Science. 1967 Dec 22;158(3808):1573–1575. doi: 10.1126/science.158.3808.1573. [DOI] [PubMed] [Google Scholar]
  20. Mosier D. E., Fitch F. W., Rowley D. A., Davies A. J. Cellular deficit in thymectomized mice. Nature. 1970 Jan 17;225(5229):276–277. doi: 10.1038/225276a0. [DOI] [PubMed] [Google Scholar]
  21. Munro A., Hunter P. In vitro reconstitution of the immune response of thymus-deprived mice to sheep red blood cells. Nature. 1970 Jan 17;225(5229):277–278. doi: 10.1038/225277a0. [DOI] [PubMed] [Google Scholar]
  22. Möller G. Immunocyte triggering. Cell Immunol. 1970 Dec;1(6):573–582. doi: 10.1016/0008-8749(70)90023-7. [DOI] [PubMed] [Google Scholar]
  23. Möller G. Induction of antigenic competition with thymus-dependent antigens: effect on DNA synthesis in spleen cells. J Immunol. 1971 Jun;106(6):1566–1571. [PubMed] [Google Scholar]
  24. Möller G. Suppressive effect of graft versus host reactions on the immune response to heterologous red cells. Immunology. 1971 Apr;20(4):597–609. [PMC free article] [PubMed] [Google Scholar]
  25. Nisbet N. W., Simonsen M., Zaleski M. The frequency of antigen-sensitive cells in tissue transplantation. A commentary on clonal selection. J Exp Med. 1969 Mar 1;129(3):459–467. doi: 10.1084/jem.129.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peavy D. L., Adler W. H., Smith R. T. The mitogenic effects of endotoxin and staphylococcal enterotoxin B on mouse spleen cells and human peripheral lymphocytes. J Immunol. 1970 Dec;105(6):1453–1458. [PubMed] [Google Scholar]
  27. REIF A. E., ALLEN J. M. THE AKR THYMIC ANTIGEN AND ITS DISTRIBUTION IN LEUKEMIAS AND NERVOUS TISSUES. J Exp Med. 1964 Sep 1;120:413–433. doi: 10.1084/jem.120.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schimpl A., Wecker E. Reconstitution of a thymus cell-deprived immune system by syngeneic and allogeneic thymocytes in vitro. Eur J Immunol. 1971 Aug;1(4):304–306. doi: 10.1002/eji.1830010419. [DOI] [PubMed] [Google Scholar]
  29. Sjöberg O., Andersson J., Möller G. Requirement for adherent cells in the primary and secondary immune response in vitro. Eur J Immunol. 1972 Apr;2(2):123–126. doi: 10.1002/eji.1830020206. [DOI] [PubMed] [Google Scholar]
  30. Sjöberg O. Antigenic competition in vitro of spleen cells subjected to a graft-versus-host reaction. Immunology. 1971 Aug;21(2):351–361. [PMC free article] [PubMed] [Google Scholar]
  31. Sjöberg O., Britton S. Antigenic competition in vitro between heterologous erythrocytes. Eur J Immunol. 1972 Jun;2(3):282–288. doi: 10.1002/eji.1830020318. [DOI] [PubMed] [Google Scholar]
  32. Sjöberg O. Effect of allogeneic cell interaction on the primary immune response in vitro. Cell types involved in suppression and stimulation of antibody synthesis. Clin Exp Immunol. 1972 Nov;12(3):365–375. [PMC free article] [PubMed] [Google Scholar]
  33. Taylor R. B., Iverson G. M. Hapten competition and the nature of cell-cooperation in the antibody response. Proc R Soc Lond B Biol Sci. 1971 Jan 12;176(1045):393–418. doi: 10.1098/rspb.1971.0003. [DOI] [PubMed] [Google Scholar]
  34. Wilson D. B., Blyth JL NOWELL P. C. Quantitative studies on the mixed lymphocyte interaction in rats. 3. Kinetics of the response. J Exp Med. 1968 Nov 1;128(5):1157–1181. doi: 10.1084/jem.128.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES