Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1992 Jan;87(1):37–45. doi: 10.1111/j.1365-2249.1992.tb06410.x

Definition of an immunodominant T cell epitope contained in the envelope gp41 sequence of HIV-1.

S J Bell 1, D A Cooper 1, B E Kemp 1, R R Doherty 1, R Penny 1
PMCID: PMC1554222  PMID: 1370773

Abstract

The majority of the immunodominant amino acid sequences of HIV-1 that have been characterized to date are coded for by hypervariable gene sequences. These variable sequences are however interspersed with sequences that are highly conserved between HIV strains. Immunogenic viral products with amino acid sequences that vary minimally between strains, and that consistently elicit both humoral and cellular immune responses, may be ideal for inclusion in a subunit vaccine. We studied HIV-seronegative and HIV-infected persons, classified as asymptomatic (AS), ARC or AIDS. Initially, we assessed the cellular immune status of each subject from results of T cell phenotype analyses, assays for serum levels of surrogate markers of disease progression, and responses to mitogens and recall antigen. In addition, we tested whether three short synthetic peptides derived from the conserved sequences of the envelope gp120 (aa 262-284) and gp41 (aa 579-601), and core p17 (aa 106-125) regions of the HTLV-IIIB isolate, could elicit B cell as well as T cell responses in HIV-infected subjects. Only the gp41-derived sequence was immunogenic at both B and T cell levels. To further characterize the gp41 epitope, we used a series of overlapping synthetic peptides derived from a conserved region of the envelope gp41 (aa 572-613). We thus identified an immunodominant 12-mer peptide sequence, gp41(8)(aa 593-604), which consistently elicited both T cell blastogenic and B cell (antibody) responses in AS HIV-seropositive individuals but not in ARC and AIDS patients. Linear regression analysis showed that in AS persons there was a strong positive correlation (P less than 0.0005) between the absolute CD8+ T cell numbers and the magnitude of blastogenic responses to the gp41(8)(aa 593-604). Furthermore, those AS subjects with T cells that proliferated in response to this gp41 analogue also had significantly greater serum levels of antibody to the same short peptide sequence than symptomatic ARC and AIDS patients. These results suggest that cellular responses to the immunodominant and highly conserved envelope sequences of HIV-1, associated with increased CD8+ T cells, may be important in the pathogenesis of HIV disease.

Full text

PDF
45

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banapour B., Rosenthal K., Rabin L., Sharma V., Young L., Fernandez J., Engleman E., McGrath M., Reyes G., Lifson J. Characterization and epitope mapping of a human monoclonal antibody reactive with the envelope glycoprotein of human immunodeficiency virus. J Immunol. 1987 Dec 15;139(12):4027–4033. [PubMed] [Google Scholar]
  2. Choppin J., Martinon F., Gomard E., Bahraoui E., Connan F., Bouillot M., Lévy J. P. Analysis of physical interactions between peptides and HLA molecules and application to the detection of human immunodeficiency virus 1 antigenic peptides. J Exp Med. 1990 Sep 1;172(3):889–899. doi: 10.1084/jem.172.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cumming S. A., McPhee D. A., Maskill W. J., Kemp B. E., Doherty R. R., Gust I. D. Use of a conserved immunodominant epitope of HIV surface glycoprotein gp41 in the detection of early antibodies. AIDS. 1990 Jan;4(1):83–86. doi: 10.1097/00002030-199001000-00012. [DOI] [PubMed] [Google Scholar]
  4. Fahey J. L., Taylor J. M., Detels R., Hofmann B., Melmed R., Nishanian P., Giorgi J. V. The prognostic value of cellular and serologic markers in infection with human immunodeficiency virus type 1. N Engl J Med. 1990 Jan 18;322(3):166–172. doi: 10.1056/NEJM199001183220305. [DOI] [PubMed] [Google Scholar]
  5. Fuchs D., Shearer G. M., Boswell R. N., Clerici M., Reibnegger G., Werner E. R., Zajac R. A., Wachter H. Increased serum neopterin in patients with HIV-1 infection is correlated with reduced in vitro interleukin-2 production. Clin Exp Immunol. 1990 Apr;80(1):44–48. doi: 10.1111/j.1365-2249.1990.tb06439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gnann J. W., Jr, Nelson J. A., Oldstone M. B. Fine mapping of an immunodominant domain in the transmembrane glycoprotein of human immunodeficiency virus. J Virol. 1987 Aug;61(8):2639–2641. doi: 10.1128/jvi.61.8.2639-2641.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gnann J. W., Jr, Schwimmbeck P. L., Nelson J. A., Truax A. B., Oldstone M. B. Diagnosis of AIDS by using a 12-amino acid peptide representing an immunodominant epitope of the human immunodeficiency virus. J Infect Dis. 1987 Aug;156(2):261–267. doi: 10.1093/infdis/156.2.261. [DOI] [PubMed] [Google Scholar]
  8. Goedert J. J., Kessler C. M., Aledort L. M., Biggar R. J., Andes W. A., White G. C., 2nd, Drummond J. E., Vaidya K., Mann D. L., Eyster M. E. A prospective study of human immunodeficiency virus type 1 infection and the development of AIDS in subjects with hemophilia. N Engl J Med. 1989 Oct 26;321(17):1141–1148. doi: 10.1056/NEJM198910263211701. [DOI] [PubMed] [Google Scholar]
  9. Goodenow M., Huet T., Saurin W., Kwok S., Sninsky J., Wain-Hobson S. HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. J Acquir Immune Defic Syndr. 1989;2(4):344–352. [PubMed] [Google Scholar]
  10. Harrison N. A., Skidmore S. J. Neopterin and beta-2 microglobulin levels in asymptomatic HIV infection: the predictive value of combining markers. J Med Virol. 1990 Oct;32(2):128–133. doi: 10.1002/jmv.1890320211. [DOI] [PubMed] [Google Scholar]
  11. Ho D. D., Sarngadharan M. G., Hirsch M. S., Schooley R. T., Rota T. R., Kennedy R. C., Chanh T. C., Sato V. L. Human immunodeficiency virus neutralizing antibodies recognize several conserved domains on the envelope glycoproteins. J Virol. 1987 Jun;61(6):2024–2028. doi: 10.1128/jvi.61.6.2024-2028.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hodges R. S., Merrifield R. B. Monitoring of solid phase peptide synthesis by an automated spectrophotometric picrate method. Anal Biochem. 1975 May 12;65(1-2):241–272. doi: 10.1016/0003-2697(75)90509-6. [DOI] [PubMed] [Google Scholar]
  13. Hoffenbach A., Langlade-Demoyen P., Dadaglio G., Vilmer E., Michel F., Mayaud C., Autran B., Plata F. Unusually high frequencies of HIV-specific cytotoxic T lymphocytes in humans. J Immunol. 1989 Jan 15;142(2):452–462. [PubMed] [Google Scholar]
  14. Jackson G. G., Paul D. A., Falk L. A., Rubenis M., Despotes J. C., Mack D., Knigge M., Emeson E. E. Human immunodeficiency virus (HIV) antigenemia (p24) in the acquired immunodeficiency syndrome (AIDS) and the effect of treatment with zidovudine (AZT). Ann Intern Med. 1988 Feb;108(2):175–180. doi: 10.7326/0003-4819-108-2-175. [DOI] [PubMed] [Google Scholar]
  15. Kemp B. E., Rylatt D. B., Bundesen P. G., Doherty R. R., McPhee D. A., Stapleton D., Cottis L. E., Wilson K., John M. A., Khan J. M. Autologous red cell agglutination assay for HIV-1 antibodies: simplified test with whole blood. Science. 1988 Sep 9;241(4871):1352–1354. doi: 10.1126/science.3413497. [DOI] [PubMed] [Google Scholar]
  16. Klasse P. J., Pipkorn R., Blomberg J. Presence of antibodies to a putatively immunosuppressive part of human immunodeficiency virus (HIV) envelope glycoprotein gp41 is strongly associated with health among HIV-positive subjects. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5225–5229. doi: 10.1073/pnas.85.14.5225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lange J. M., de Wolf F., Goudsmit J. Markers for progression in HIV infection. AIDS. 1989;3 (Suppl 1):S153–S160. doi: 10.1097/00002030-198901001-00023. [DOI] [PubMed] [Google Scholar]
  18. Mathiesen T., Broliden P. A., Rosen J., Wahren B. Mapping of IgG subclass and T-cell epitopes on HIV proteins by synthetic peptides. Immunology. 1989 Aug;67(4):453–459. [PMC free article] [PubMed] [Google Scholar]
  19. Meyerhans A., Cheynier R., Albert J., Seth M., Kwok S., Sninsky J., Morfeldt-Månson L., Asjö B., Wain-Hobson S. Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell. 1989 Sep 8;58(5):901–910. doi: 10.1016/0092-8674(89)90942-2. [DOI] [PubMed] [Google Scholar]
  20. Modrow S., Hahn B. H., Shaw G. M., Gallo R. C., Wong-Staal F., Wolf H. Computer-assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions. J Virol. 1987 Feb;61(2):570–578. doi: 10.1128/jvi.61.2.570-578.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Montefiori D. C., Robinson W. E., Jr, Hirsch V. M., Modliszewski A., Mitchell W. M., Johnson P. R. Antibody-dependent enhancement of simian immunodeficiency virus (SIV) infection in vitro by plasma from SIV-infected rhesus macaques. J Virol. 1990 Jan;64(1):113–119. doi: 10.1128/jvi.64.1.113-119.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Phillips A. N., Lee C. A., Elford J., Janossy G., Timms A., Bofill M., Kernoff P. B. Serial CD4 lymphocyte counts and development of AIDS. Lancet. 1991 Feb 16;337(8738):389–392. doi: 10.1016/0140-6736(91)91166-r. [DOI] [PubMed] [Google Scholar]
  23. Robinson W. E., Jr, Kawamura T., Gorny M. K., Lake D., Xu J. Y., Matsumoto Y., Sugano T., Masuho Y., Mitchell W. M., Hersh E. Human monoclonal antibodies to the human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein gp41 enhance HIV-1 infection in vitro. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3185–3189. doi: 10.1073/pnas.87.8.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Robinson W. E., Jr, Kawamura T., Lake D., Masuho Y., Mitchell W. M., Hersh E. M. Antibodies to the primary immunodominant domain of human immunodeficiency virus type 1 (HIV-1) glycoprotein gp41 enhance HIV-1 infection in vitro. J Virol. 1990 Nov;64(11):5301–5305. doi: 10.1128/jvi.64.11.5301-5305.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ruegg C. L., Monell C. R., Strand M. Inhibition of lymphoproliferation by a synthetic peptide with sequence identity to gp41 of human immunodeficiency virus type 1. J Virol. 1989 Aug;63(8):3257–3260. doi: 10.1128/jvi.63.8.3257-3260.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saag M. S., Hahn B. H., Gibbons J., Li Y., Parks E. S., Parks W. P., Shaw G. M. Extensive variation of human immunodeficiency virus type-1 in vivo. Nature. 1988 Aug 4;334(6181):440–444. doi: 10.1038/334440a0. [DOI] [PubMed] [Google Scholar]
  27. Schrier R. D., Gnann J. W., Jr, Langlois A. J., Shriver K., Nelson J. A., Oldstone M. B. B- and T-lymphocyte responses to an immunodominant epitope of human immunodeficiency virus. J Virol. 1988 Aug;62(8):2531–2536. doi: 10.1128/jvi.62.8.2531-2536.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Starcich B. R., Hahn B. H., Shaw G. M., McNeely P. D., Modrow S., Wolf H., Parks E. S., Parks W. P., Josephs S. F., Gallo R. C. Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell. 1986 Jun 6;45(5):637–648. doi: 10.1016/0092-8674(86)90778-6. [DOI] [PubMed] [Google Scholar]
  29. Walker B. D., Chakrabarti S., Moss B., Paradis T. J., Flynn T., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature. 1987 Jul 23;328(6128):345–348. doi: 10.1038/328345a0. [DOI] [PubMed] [Google Scholar]
  30. Weinhold K. J., Lyerly H. K., Matthews T. J., Tyler D. S., Ahearne P. M., Stine K. C., Langlois A. J., Durack D. T., Bolognesi D. P. Cellular anti-GP120 cytolytic reactivities in HIV-1 seropositive individuals. Lancet. 1988 Apr 23;1(8591):902–905. doi: 10.1016/s0140-6736(88)91713-8. [DOI] [PubMed] [Google Scholar]
  31. Willey R. L., Rutledge R. A., Dias S., Folks T., Theodore T., Buckler C. E., Martin M. A. Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5038–5042. doi: 10.1073/pnas.83.14.5038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolfs T. F., de Jong J. J., Van den Berg H., Tijnagel J. M., Krone W. J., Goudsmit J. Evolution of sequences encoding the principal neutralization epitope of human immunodeficiency virus 1 is host dependent, rapid, and continuous. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9938–9942. doi: 10.1073/pnas.87.24.9938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wong-Staal F., Shaw G. M., Hahn B. H., Salahuddin S. Z., Popovic M., Markham P., Redfield R., Gallo R. C. Genomic diversity of human T-lymphotropic virus type III (HTLV-III). Science. 1985 Aug 23;229(4715):759–762. doi: 10.1126/science.2992084. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES