Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1994 Dec;102(Suppl 11):37–50. doi: 10.1289/ehp.94102s1137

Applications of physiologic pharmacokinetic modeling in carcinogenic risk assessment.

D Krewski 1, J R Withey 1, L F Ku 1, M E Andersen 1
PMCID: PMC1566756  PMID: 7737040

Abstract

The use of physiologically based pharmacokinetic (PBPK) models has been proposed as a means of estimating the dose of the reactive metabolites of carcinogenic xenobiotics reaching target tissues, thereby affording an opportunity to base estimates of potential cancer risk on tissue dose rather than external levels of exposure. In this article, we demonstrate how a PBPK model can be constructed by specifying mass-balance equations for each physiological compartment included in the model. In general, this leads to a system of nonlinear partial differential equations with which to characterize the compartment system. These equations then can be solved numerically to determine the concentration of metabolites in each compartment as functions of time. In the special case of a linear pharmacokinetic system, we present simple closed-form expressions for the area under the concentration-time curves (AUC) in individual tissue compartments. A general relationship between the AUC in blood and other tissue compartments is also established. These results are of use in identifying those parameters in the models that characterize the integrated tissue dose, and which should therefore be the primary focus of sensitivity analyses. Applications of PBPK modeling for purposes of tissue dosimetry are reviewed, including models developed for methylene chloride, ethylene oxide, 1,4-dioxane, 1-nitropyrene, as well as polychlorinated biphenyls, dioxins, and furans. Special considerations in PBPK modeling related to aging, topical absorption, pregnancy, and mixed exposures are discussed. The linkage between pharmacokinetic models used for tissue dosimetry and pharmacodynamic models for neoplastic transformation of stem cells in the target tissue is explored.

Full text

PDF
46

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. E., Anders M. W. Metabolism of dihalomethanes to formaldehyde and inorganic halide. I. In vitro studies. Drug Metab Dispos. 1976 Jul-Aug;4(4):357–361. [PubMed] [Google Scholar]
  2. Andersen M. E., Clewell H. J., 3rd, Gargas M. L., Smith F. A., Reitz R. H. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol. 1987 Feb;87(2):185–205. doi: 10.1016/0041-008x(87)90281-x. [DOI] [PubMed] [Google Scholar]
  3. Andersen M. E., Gargas M. L., Clewell H. J., 3rd, Severyn K. M. Quantitative evaluation of the metabolic interactions between trichloroethylene and 1,1-dichloroethylene in vivo using gas uptake methods. Toxicol Appl Pharmacol. 1987 Jun 30;89(2):149–157. doi: 10.1016/0041-008x(87)90035-4. [DOI] [PubMed] [Google Scholar]
  4. Andersen M. E., Gargas M. L., Jones R. A., Jenkins L. J., Jr Determination of the kinetic constants for metabolism of inhaled toxicants in vivo using gas uptake measurements. Toxicol Appl Pharmacol. 1980 Jun 15;54(1):100–116. doi: 10.1016/0041-008x(80)90011-3. [DOI] [PubMed] [Google Scholar]
  5. Andersen M. E., Gargas M. L., Jones R. A., Jenkins L. J., Jr The use of inhalation techniques to assess the kinetic constants of 1,1-dichloroethylene metabolism. Toxicol Appl Pharmacol. 1979 Feb;47(2):395–409. doi: 10.1016/0041-008x(79)90335-1. [DOI] [PubMed] [Google Scholar]
  6. Andersen M. E., Mills J. J., Gargas M. L., Kedderis L., Birnbaum L. S., Neubert D., Greenlee W. F. Modeling receptor-mediated processes with dioxin: implications for pharmacokinetics and risk assessment. Risk Anal. 1993 Feb;13(1):25–36. doi: 10.1111/j.1539-6924.1993.tb00726.x. [DOI] [PubMed] [Google Scholar]
  7. Andersen M. E. Physiological modelling of organic compounds. Ann Occup Hyg. 1991 Jun;35(3):309–321. doi: 10.1093/annhyg/35.3.309. [DOI] [PubMed] [Google Scholar]
  8. Andersen M. E. Saturable metabolism and its relationship to toxicity. Crit Rev Toxicol. 1981 May;9(2):105–150. doi: 10.3109/10408448109059563. [DOI] [PubMed] [Google Scholar]
  9. Argus M. F., Sohal R. S., Bryant G. M., Hoch-Ligeti C., Arcos J. C. Dose-response and ultrastructural alterations in dioxane carcinogenesis. Influence of methylcholanthrene on acute toxicity. Eur J Cancer. 1973 Apr;9(4):237–243. doi: 10.1016/0014-2964(73)90088-1. [DOI] [PubMed] [Google Scholar]
  10. Bogen K. T. Pharmacokinetics for regulatory risk analysis: the case of trichloroethylene. Regul Toxicol Pharmacol. 1988 Dec;8(4):447–466. doi: 10.1016/0273-2300(88)90045-1. [DOI] [PubMed] [Google Scholar]
  11. Bois F. Y., Woodruff T. J., Spear R. C. Comparison of three physiologically based pharmacokinetic models of benzene disposition. Toxicol Appl Pharmacol. 1991 Aug;110(1):79–88. doi: 10.1016/0041-008x(91)90291-l. [DOI] [PubMed] [Google Scholar]
  12. Bois F. Y., Zeise L., Tozer T. N. Precision and sensitivity of pharmacokinetic models for cancer risk assessment: tetrachloroethylene in mice, rats, and humans. Toxicol Appl Pharmacol. 1990 Feb;102(2):300–315. doi: 10.1016/0041-008x(90)90029-t. [DOI] [PubMed] [Google Scholar]
  13. Bond J. A., Sun J. D., Medinsky M. A., Jones R. K., Yeh H. C. Deposition, metabolism, and excretion of 1-[14C]nitropyrene and 1-[14C]nitropyrene coated on diesel exhaust particles as influenced by exposure concentration. Toxicol Appl Pharmacol. 1986 Aug;85(1):102–117. doi: 10.1016/0041-008x(86)90391-1. [DOI] [PubMed] [Google Scholar]
  14. Butterworth B. E. Consideration of both genotoxic and nongenotoxic mechanisms in predicting carcinogenic potential. Mutat Res. 1990 Sep;239(2):117–132. doi: 10.1016/0165-1110(90)90033-8. [DOI] [PubMed] [Google Scholar]
  15. Byard J. L. The toxicological significance of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds in human adipose tissue. J Toxicol Environ Health. 1987;22(4):381–403. doi: 10.1080/15287398709531081. [DOI] [PubMed] [Google Scholar]
  16. Casanova M., Morgan K. T., Steinhagen W. H., Everitt J. I., Popp J. A., Heck H. D. Covalent binding of inhaled formaldehyde to DNA in the respiratory tract of rhesus monkeys: pharmacokinetics, rat-to-monkey interspecies scaling, and extrapolation to man. Fundam Appl Toxicol. 1991 Aug;17(2):409–428. doi: 10.1016/0272-0590(91)90230-2. [DOI] [PubMed] [Google Scholar]
  17. Chang K. J., Chen J. S., Huang P. C., Tung T. C. [Study of patients with polycholorinated biphenyls poisoning. I. Blood analyses of patients (author's transl)]. Taiwan Yi Xue Hui Za Zhi. 1980 Mar;79(3):304–313. [PubMed] [Google Scholar]
  18. Corley R. A., Mendrala A. L., Smith F. A., Staats D. A., Gargas M. L., Conolly R. B., Andersen M. E., Reitz R. H. Development of a physiologically based pharmacokinetic model for chloroform. Toxicol Appl Pharmacol. 1990 May;103(3):512–527. doi: 10.1016/0041-008x(90)90324-n. [DOI] [PubMed] [Google Scholar]
  19. Ehrenberg L., Moustacchi E., Osterman-Golkar S. International Commission for Protection Against Environmental Mutagens and Carcinogens. Dosimetry of genotoxic agents and dose-response relationships of their effects. Mutat Res. 1983 Oct;123(2):121–182. doi: 10.1016/0165-1110(83)90024-6. [DOI] [PubMed] [Google Scholar]
  20. El-Bayoumy K., Hecht S. S., Sackl T., Stoner G. D. Tumorigenicity and metabolism of 1-nitropyrene in A/J mice. Carcinogenesis. 1984 Nov;5(11):1449–1452. doi: 10.1093/carcin/5.11.1449. [DOI] [PubMed] [Google Scholar]
  21. Farrar D., Allen B., Crump K., Shipp A. Evaluation of uncertainty in input parameters to pharmacokinetic models and the resulting uncertainty in output. Toxicol Lett. 1989 Dec;49(2-3):371–385. doi: 10.1016/0378-4274(89)90044-1. [DOI] [PubMed] [Google Scholar]
  22. Farris F. F., Dedrick R. L., King F. G. Cisplatin pharmacokinetics: applications of a physiological model. Toxicol Lett. 1988 Oct;43(1-3):117–137. doi: 10.1016/0378-4274(88)90024-0. [DOI] [PubMed] [Google Scholar]
  23. Filser J. G. The closed chamber technique--uptake, endogenous production, excretion, steady-state kinetics and rates of metabolism of gases and vapors. Arch Toxicol. 1992;66(1):1–10. doi: 10.1007/BF02307263. [DOI] [PubMed] [Google Scholar]
  24. Fisher J. W., Whittaker T. A., Taylor D. H., Clewell H. J., 3rd, Andersen M. E. Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol. 1990 Mar 1;102(3):497–513. doi: 10.1016/0041-008x(90)90045-v. [DOI] [PubMed] [Google Scholar]
  25. Fisher J. W., Whittaker T. A., Taylor D. H., Clewell H. J., 3rd, Andersen M. E. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol. 1989 Jul;99(3):395–414. doi: 10.1016/0041-008x(89)90149-x. [DOI] [PubMed] [Google Scholar]
  26. Florack E. I., Zielhuis G. A. Occupational ethylene oxide exposure and reproduction. Int Arch Occup Environ Health. 1990;62(4):273–277. doi: 10.1007/BF00640833. [DOI] [PubMed] [Google Scholar]
  27. Föst U., Marczynski B., Kasemann R., Peter H. Determination of 7-(2-hydroxyethyl)guanine with gas chromatography/mass spectrometry as a parameter for genotoxicity of ethylene oxide. Arch Toxicol Suppl. 1989;13:250–253. doi: 10.1007/978-3-642-74117-3_43. [DOI] [PubMed] [Google Scholar]
  28. Gabrielsson J. L., Johansson P., Bondesson U., Paalzow L. K. Analysis of methadone disposition in the pregnant rat by means of a physiological flow model. J Pharmacokinet Biopharm. 1985 Aug;13(4):355–372. doi: 10.1007/BF01061474. [DOI] [PubMed] [Google Scholar]
  29. Gabrielsson J. L., Paalzow L. K. A physiological pharmacokinetic model for morphine disposition in the pregnant rat. J Pharmacokinet Biopharm. 1983 Apr;11(2):147–163. doi: 10.1007/BF01061846. [DOI] [PubMed] [Google Scholar]
  30. Gargas M. L., Andersen M. E. Determining kinetic constants of chlorinated ethane metabolism in the rat from rates of exhalation. Toxicol Appl Pharmacol. 1989 Jun 15;99(2):344–353. doi: 10.1016/0041-008x(89)90016-1. [DOI] [PubMed] [Google Scholar]
  31. Gargas M. L., Clewell H. J., 3rd, Andersen M. E. Metabolism of inhaled dihalomethanes in vivo: differentiation of kinetic constants for two independent pathways. Toxicol Appl Pharmacol. 1986 Feb;82(2):211–223. doi: 10.1016/0041-008x(86)90196-1. [DOI] [PubMed] [Google Scholar]
  32. Garman R. H., Snellings W. M., Maronpot R. R. Frequency, size and location of brain tumours in F-344 rats chronically exposed to ethylene oxide. Food Chem Toxicol. 1986 Feb;24(2):145–153. doi: 10.1016/0278-6915(86)90349-2. [DOI] [PubMed] [Google Scholar]
  33. Gasiewicz T. A., Geiger L. E., Rucci G., Neal R. A. Distribution, excretion, and metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J, DBA/2J, and B6D2F1/J mice. Drug Metab Dispos. 1983 Sep-Oct;11(5):397–403. [PubMed] [Google Scholar]
  34. Goddard M. J., Krewski D. Interspecies extrapolation of toxicity data. Risk Anal. 1992 Jun;12(2):315–317. doi: 10.1111/j.1539-6924.1992.tb00679.x. [DOI] [PubMed] [Google Scholar]
  35. Hattis D., White P., Marmorstein L., Koch P. Uncertainties in pharmacokinetic modeling for perchloroethylene. I. Comparison of model structure, parameters, and predictions for low-dose metabolism rates for models derived by different authors. Risk Anal. 1990 Sep;10(3):449–458. doi: 10.1111/j.1539-6924.1990.tb00528.x. [DOI] [PubMed] [Google Scholar]
  36. Henschler D. Metabolism and mutagenicity of halogenated olefins--a comparison of structure and activity. Environ Health Perspect. 1977 Dec;21:61–64. doi: 10.1289/ehp.772161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Hetrick D. M., Jarabek A. M., Travis C. C. Sensitivity analysis for physiologically based pharmacokinetic models. J Pharmacokinet Biopharm. 1991 Feb;19(1):1–20. doi: 10.1007/BF01062190. [DOI] [PubMed] [Google Scholar]
  38. Hirose M., Lee M. S., Wang C. Y., King C. M. Induction of rat mammary gland tumors by 1-nitropyrene, a recently recognized environmental mutagen. Cancer Res. 1984 Mar;44(3):1158–1162. [PubMed] [Google Scholar]
  39. Ito N., Nagasaki H., Arai M., Makiura S., Sugihara S., Hirao K. Histopathologic studies on liver tumorigenesis induced in mice by technical polychlorinated biphenyls and its promoting effect on liver tumors induced by benzene hexachloride. J Natl Cancer Inst. 1973 Nov;51(5):1637–1646. doi: 10.1093/jnci/51.5.1637. [DOI] [PubMed] [Google Scholar]
  40. Jollow D. J., Mitchell J. R., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 1973 Oct;187(1):195–202. [PubMed] [Google Scholar]
  41. Jones A. R., Wells G. The comparative metabolism of 2-bromoethanol and ethylene oxide in the rat. Xenobiotica. 1981 Nov;11(11):763–770. doi: 10.3109/00498258109045880. [DOI] [PubMed] [Google Scholar]
  42. Kagawa J., Toyama T. Effects of ozone and brief exercise on specific airway conductance in man. Arch Environ Health. 1975 Jan;30(1):36–39. doi: 10.1080/00039896.1975.10666630. [DOI] [PubMed] [Google Scholar]
  43. King F. G., Dedrick R. L., Collins J. M., Matthews H. B., Birnbaum L. S. Physiological model for the pharmacokinetics of 2,3,7,8-tetrachlorodibenzofuran in several species. Toxicol Appl Pharmacol. 1983 Mar 15;67(3):390–400. doi: 10.1016/0041-008x(83)90323-x. [DOI] [PubMed] [Google Scholar]
  44. Kouri R. E., Rude T. H., Joglekar R., Dansette P. M., Jerina D. M., Atlas S. A., Owens I. S., Nebert D. W. 2,3,7,8-tetrachlorodibenzo-p-dioxin as cocarcinogen causing 3-methylcholanthrene-initiated subcutaneous tumors in mice genetically "nonresponsive" at Ah locus. Cancer Res. 1978 Sep;38(9):2777–2783. [PubMed] [Google Scholar]
  45. Krishnan K., Gargas M. L., Fennell T. R., Andersen M. E. A physiologically based description of ethylene oxide dosimetry in the rat. Toxicol Ind Health. 1992 May-Jun;8(3):121–140. doi: 10.1177/074823379200800301. [DOI] [PubMed] [Google Scholar]
  46. Kroes R., Wester P. W. Forestomach carcinogens: possible mechanisms of action. Food Chem Toxicol. 1986 Oct-Nov;24(10-11):1083–1089. doi: 10.1016/0278-6915(86)90292-9. [DOI] [PubMed] [Google Scholar]
  47. Leung H. W., Ku R. H., Paustenbach D. J., Andersen M. E. A physiologically based pharmacokinetic model for 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Toxicol Lett. 1988 Jul;42(1):15–28. doi: 10.1016/0378-4274(88)90098-7. [DOI] [PubMed] [Google Scholar]
  48. Leung H. W., Paustenbach D. J., Murray F. J., Andersen M. E. A physiological pharmacokinetic description of the tissue distribution and enzyme-inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicol Appl Pharmacol. 1990 May;103(3):399–410. doi: 10.1016/0041-008x(90)90313-j. [DOI] [PubMed] [Google Scholar]
  49. Leung H. W., Poland A., Paustenbach D. J., Murray F. J., Andersen M. E. Pharmacokinetics of [125I]-2-iodo-3,7,8-trichlorodibenzo-p-dioxin in mice: analysis with a physiological modeling approach. Toxicol Appl Pharmacol. 1990 May;103(3):411–419. doi: 10.1016/0041-008x(90)90314-k. [DOI] [PubMed] [Google Scholar]
  50. Loose L. D., Silkworth J. B., Pittman K. A., Benitz K. F., Mueller W. Impaired host resistance to endotoxin and malaria in polychlorinated biphenyl- and hexachlorobenzene-treated mice. Infect Immun. 1978 Apr;20(1):30–35. doi: 10.1128/iai.20.1.30-35.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Lutz R. J., Dedrick R. L., Matthews H. B., Eling T. E., Anderson M. W. A preliminary pharmacokinetic model for several chlorinated biphenyls in the rat. Drug Metab Dispos. 1977 Jul-Aug;5(4):386–396. [PubMed] [Google Scholar]
  52. Lynch D. W., Lewis T. R., Moorman W. J., Burg J. R., Groth D. H., Khan A., Ackerman L. J., Cockrell B. Y. Carcinogenic and toxicologic effects of inhaled ethylene oxide and propylene oxide in F344 rats. Toxicol Appl Pharmacol. 1984 Oct;76(1):69–84. doi: 10.1016/0041-008x(84)90030-9. [DOI] [PubMed] [Google Scholar]
  53. Mattison D. R., Blann E., Malek A. Physiological alterations during pregnancy: impact on toxicokinetics. Fundam Appl Toxicol. 1991 Feb;16(2):215–218. doi: 10.1016/0272-0590(91)90103-b. [DOI] [PubMed] [Google Scholar]
  54. McKelvey J. A., Zemaitis M. A. The effects of ethylene oxide (EO) exposure on tissue glutathione levels in rats and mice. Drug Chem Toxicol. 1986;9(1):51–66. doi: 10.3109/01480548609042830. [DOI] [PubMed] [Google Scholar]
  55. Medinsky M. A., Bond J. A., Hunsberger S., Griffith W. C., Jr A physiologically based model of 1-nitropyrene metabolism after inhalation or ingestion. Health Phys. 1989;57 (Suppl 1):149–155. doi: 10.1097/00004032-198907001-00018. [DOI] [PubMed] [Google Scholar]
  56. Medinsky M. A., Sabourin P. J., Lucier G., Birnbaum L. S., Henderson R. F. A physiological model for simulation of benzene metabolism by rats and mice. Toxicol Appl Pharmacol. 1989 Jun 15;99(2):193–206. doi: 10.1016/0041-008x(89)90002-1. [DOI] [PubMed] [Google Scholar]
  57. Medinsky M. A., Sabourin P. J., Lucier G., Birnbaum L. S., Henderson R. F. A physiological model for simulation of benzene metabolism by rats and mice. Toxicol Appl Pharmacol. 1989 Jun 15;99(2):193–206. doi: 10.1016/0041-008x(89)90002-1. [DOI] [PubMed] [Google Scholar]
  58. Moolgavkar S. H., Knudson A. G., Jr Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst. 1981 Jun;66(6):1037–1052. doi: 10.1093/jnci/66.6.1037. [DOI] [PubMed] [Google Scholar]
  59. Moolgavkar S. H., Knudson A. G., Jr Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst. 1981 Jun;66(6):1037–1052. doi: 10.1093/jnci/66.6.1037. [DOI] [PubMed] [Google Scholar]
  60. Moore J. A., McConnell E. E., Dalgard D. W., Harris M. W. Comparative toxicity of three halogenated dibenzofurans in guinea pigs, mice, and rhesus monkeys. Ann N Y Acad Sci. 1979 May 31;320:151–163. doi: 10.1111/j.1749-6632.1979.tb56598.x. [DOI] [PubMed] [Google Scholar]
  61. Neal R. A. Mechanisms of the biological effects of PCBs, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in experimental animals. Environ Health Perspect. 1985 May;60:41–46. doi: 10.1289/ehp.856041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Ohgaki H., Matsukura N., Morino K., Kawachi T., Sugimura T., Morita K., Tokiwa H., Hirota T. Carcinogenicity in rats of the mutagenic compounds 1-nitropyrene and 3-nitrofluoranthene. Cancer Lett. 1982 Jan;15(1):1–7. doi: 10.1016/0304-3835(82)90068-4. [DOI] [PubMed] [Google Scholar]
  63. Olanoff L. S., Anderson J. M. Controlled release of tetracycline--III: A physiological pharmacokinetic model of the pregnant rat. J Pharmacokinet Biopharm. 1980 Dec;8(6):599–620. doi: 10.1007/BF01060056. [DOI] [PubMed] [Google Scholar]
  64. Paustenbach D. J., Clewell H. J., 3rd, Gargas M. L., Andersen M. E. A physiologically based pharmacokinetic model for inhaled carbon tetrachloride. Toxicol Appl Pharmacol. 1988 Nov;96(2):191–211. doi: 10.1016/0041-008x(88)90080-4. [DOI] [PubMed] [Google Scholar]
  65. Pitts J. N., Jr, Lokensgard D. M., Harger W., Fisher T. S., Mejia V., Schuler J. J., Scorziell G. M., Katzenstein Y. A. Mutagens in diesel exhaust particulate. Identification and direct activities of 6-nitrobenzo[a]pyrene, 9-nitroanthracene, 1-nitropyrene and 5h-phenanthro[4,5-bcd]pyran-5-one. Mutat Res. 1982 Mar;103(3-6):241–249. doi: 10.1016/0165-7992(82)90049-5. [DOI] [PubMed] [Google Scholar]
  66. Poland A., Glover E., Kende A. S. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 1976 Aug 25;251(16):4936–4946. [PubMed] [Google Scholar]
  67. Poland A., Knutson J. C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol. 1982;22:517–554. doi: 10.1146/annurev.pa.22.040182.002505. [DOI] [PubMed] [Google Scholar]
  68. Portier C. J., Kaplan N. L. Variability of safe dose estimates when using complicated models of the carcinogenic process. A case study: methylene chloride. Fundam Appl Toxicol. 1989 Oct;13(3):533–544. doi: 10.1016/0272-0590(89)90290-x. [DOI] [PubMed] [Google Scholar]
  69. Potter D., Blair D., Davies R., Watson W. P., Wright A. S. The relationships between alkylation of haemoglobin and DNA in Fischer 344 rats exposed to [14C]ethylene oxide. Arch Toxicol Suppl. 1989;13:254–257. doi: 10.1007/978-3-642-74117-3_44. [DOI] [PubMed] [Google Scholar]
  70. Ramsey J. C., Andersen M. E. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol. 1984 Mar 30;73(1):159–175. doi: 10.1016/0041-008x(84)90064-4. [DOI] [PubMed] [Google Scholar]
  71. Recknagel R. O. Carbon tetrachloride hepatotoxicity. Pharmacol Rev. 1967 Jun;19(2):145–208. [PubMed] [Google Scholar]
  72. Reitz R. H., McCroskey P. S., Park C. N., Andersen M. E., Gargas M. L. Development of a physiologically based pharmacokinetic model for risk assessment with 1,4-dioxane. Toxicol Appl Pharmacol. 1990 Aug;105(1):37–54. doi: 10.1016/0041-008x(90)90357-z. [DOI] [PubMed] [Google Scholar]
  73. Reitz R. H., Mendrala A. L., Corley R. A., Quast J. F., Gargas M. L., Andersen M. E., Staats D. A., Conolly R. B. Estimating the risk of liver cancer associated with human exposures to chloroform using physiologically based pharmacokinetic modeling. Toxicol Appl Pharmacol. 1990 Sep 15;105(3):443–459. doi: 10.1016/0041-008x(90)90148-n. [DOI] [PubMed] [Google Scholar]
  74. Rosenkranz H. S., McCoy E. C., Sanders D. R., Butler M., Kiriazides D. K., Mermelstein R. Nitropyrenes: isolation, identificaton, and reduction of mutagenic impurities in carbon black and toners. Science. 1980 Aug 29;209(4460):1039–1043. doi: 10.1126/science.6996095. [DOI] [PubMed] [Google Scholar]
  75. Safe S. H. Comparative toxicology and mechanism of action of polychlorinated dibenzo-p-dioxins and dibenzofurans. Annu Rev Pharmacol Toxicol. 1986;26:371–399. doi: 10.1146/annurev.pa.26.040186.002103. [DOI] [PubMed] [Google Scholar]
  76. Sato A., Nakajima T. Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil. Br J Ind Med. 1979 Aug;36(3):231–234. doi: 10.1136/oem.36.3.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Schumann A. M., Fox T. R., Watanabe P. G. [14C]Methyl chloroform (1,1,1-trichloroethane): pharmacokinetics in rats and mice following inhalation exposure. Toxicol Appl Pharmacol. 1982 Mar 15;62(3):390–401. doi: 10.1016/0041-008x(82)90140-5. [DOI] [PubMed] [Google Scholar]
  78. Schwetz B. A., Norris J. M., Sparschu G. L., Rowe U. K., Gehring P. J., Emerson J. L., Gerbig C. G. Toxicology of chlorinated dibenzo-p-dioxins. Environ Health Perspect. 1973 Sep;5:87–99. doi: 10.1289/ehp.730587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Segerbäck D. Reaction products in hemoglobin and DNA after in vitro treatment with ethylene oxide and N-(2-hydroxyethyl)-N-nitrosourea. Carcinogenesis. 1990 Feb;11(2):307–312. doi: 10.1093/carcin/11.2.307. [DOI] [PubMed] [Google Scholar]
  80. Snellings W. M., Weil C. S., Maronpot R. R. A two-year inhalation study of the carcinogenic potential of ethylene oxide in Fischer 344 rats. Toxicol Appl Pharmacol. 1984 Aug;75(1):105–117. doi: 10.1016/0041-008x(84)90081-4. [DOI] [PubMed] [Google Scholar]
  81. Tardif R., Goyal R., Brodeur J., Gérin M. Species differences in the urinary disposition of some metabolites of ethylene oxide. Fundam Appl Toxicol. 1987 Oct;9(3):448–453. doi: 10.1016/0272-0590(87)90027-3. [DOI] [PubMed] [Google Scholar]
  82. Travis C. C., McClain T. W., Birkner P. D. Diethylnitrosamine-induced hepatocarcinogenesis in rats: a theoretical study. Toxicol Appl Pharmacol. 1991 Jun 15;109(2):289–304. doi: 10.1016/0041-008x(91)90176-f. [DOI] [PubMed] [Google Scholar]
  83. Travis C. C., White R. K. Interspecific scaling of toxicity data. Risk Anal. 1988 Mar;8(1):119–125. doi: 10.1111/j.1539-6924.1988.tb01158.x. [DOI] [PubMed] [Google Scholar]
  84. Tóth K., Somfai-Relle S., Sugár J., Bence J. Carcinogenicity testing of herbicide 2,4,5-trichlorophenoxyethanol containing dioxin and of pure dioxin in Swiss mice. Nature. 1979 Apr 5;278(5704):548–549. doi: 10.1038/278548a0. [DOI] [PubMed] [Google Scholar]
  85. Törnqvist M., Gustafsson B., Kautiainen A., Harms-Ringdahl M., Granath F., Ehrenberg L. Unsaturated lipids and intestinal bacteria as sources of endogenous production of ethene and ethylene oxide. Carcinogenesis. 1989 Jan;10(1):39–41. doi: 10.1093/carcin/10.1.39. [DOI] [PubMed] [Google Scholar]
  86. Wester P. W., Kroes R. Forestomach carcinogens: pathology and relevance to man. Toxicol Pathol. 1988;16(2):165–171. doi: 10.1177/019262338801600209. [DOI] [PubMed] [Google Scholar]
  87. Young J. D., Braun W. H., Gehring P. J. The dose-dependent fate of 1,4-dioxane in rats. J Environ Pathol Toxicol. 1978 Nov-Dec;2(2):263–282. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES