Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1984 Mar;54:67–72. doi: 10.1289/ehp.845467

Effects of cadmium and zinc on tissue levels of metallothionein.

S Onosaka, K Tanaka, M G Cherian
PMCID: PMC1568161  PMID: 6734572

Abstract

Although the induced synthesis of metallothionein (MT) after exposure to certain metals has been known for some time, there is little information on the quantitation of MT in various tissues. In this study, tissue MT concentrations were measured by a modified Cd-saturation method in tissues of adult male rats after injection of different metal salts. There were differences in tissue levels of MT, depending on the injected metals. Of all the metals studied, Cd2+ was the most effective element in increasing MT concentrations in liver, kidney, pancreas and small intestine. The highest increase in tissue MT concentration after CdCl2 injection was found in the liver, while the pancreas contained the highest MT level after ZnSO4 injection. Co and Ni salts increased MT levels in both liver and kidney, while Mn and Ca increased MT levels only in liver. A direct correlation between tissue MT levels and Cd or Zn concentration was observed in most of the tissues after injection of CdCl2 or ZnSO4. Although there was no positive relationship between tissue levels of MT and tissue Mn and Ni concentrations, the increase in hepatic Zn after injection of these metals was related to hepatic MT levels. The tissue distribution of injected Cd2+ in control adult rats and Zn-deficient rats was similar. However, there was no increase in pancreatic MT levels in Zn-deficient rats after injection of CdCl2. The high concentration of MT in pancreas after ZnSO4 injection in adult rats and the inability of the pancreas to synthesize MT in Zn-deficient rats suggest that the induction of pancreatic MT synthesis is sensitive to Zn status.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
71

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bremner I., Marshall R. B. Hepatic copper- and zinc-binding proteins in ruminants. 2. Relationship between Cu and Zn concentrations and the occurrence of a metallothionein-like fraction. Br J Nutr. 1974 Sep;32(2):293–300. doi: 10.1079/bjn19740082. [DOI] [PubMed] [Google Scholar]
  2. Bremner I., Young B. W. Isolation of (copper, zinc)-thioneins from the livers of copper-injected rats. Biochem J. 1976 Aug 1;157(2):517–520. doi: 10.1042/bj1570517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Briggs R. W., Armitage I. M. Evidence for site-selective metal binding in calf liver metallothionein. J Biol Chem. 1982 Feb 10;257(3):1259–1262. [PubMed] [Google Scholar]
  4. Eaton D. L., Stacey N. H., Wong K. L., Klaassen C. D. Dose-response effects of various metal ions on rat liver metallothionein, glutathione, heme oxygenase, and cytochrome P-450. Toxicol Appl Pharmacol. 1980 Sep 15;55(2):393–402. doi: 10.1016/0041-008x(80)90101-5. [DOI] [PubMed] [Google Scholar]
  5. Etzel K. R., Shapiro S. G., Cousins R. J. Regulation of liver metallothionein and plasma zinc by the glucocorticoid dexamethasone. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1120–1126. doi: 10.1016/0006-291x(79)92124-7. [DOI] [PubMed] [Google Scholar]
  6. Hager L. J., Palmiter R. D. Transcriptional regulation of mouse liver metallothionein-I gene by glucocorticoids. Nature. 1981 May 28;291(5813):340–342. doi: 10.1038/291340a0. [DOI] [PubMed] [Google Scholar]
  7. Klaassen C. D. Induction of metallothionein by adrenocortical steroids. Toxicology. 1981;20(4):275–279. doi: 10.1016/0300-483x(81)90034-2. [DOI] [PubMed] [Google Scholar]
  8. Nordberg G. F., Nordberg M., Piscator M., Vesterberg O. Separation of two forms of rabbit metallothionein by isoelectric focusing. Biochem J. 1972 Feb;126(3):491–498. doi: 10.1042/bj1260491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oh S. H., Deagen J. T., Whanger P. D., Weswig P. H. Biological function of metallothionein. V. Its induction in rats by various stresses. Am J Physiol. 1978 Mar;234(3):E282–E285. doi: 10.1152/ajpendo.1978.234.3.E282. [DOI] [PubMed] [Google Scholar]
  10. Ohi S., Cardenosa G., Pine R., Huang P. C. Cadmium-induced accumulation of metallothionein messenger RNA in rat liver. J Biol Chem. 1981 Mar 10;256(5):2180–2184. [PubMed] [Google Scholar]
  11. Olafson R. W., Sim R. G. An electrochemical approach to quantitation and characterization of metallothioneins. Anal Biochem. 1979 Dec;100(2):343–351. doi: 10.1016/0003-2697(79)90239-2. [DOI] [PubMed] [Google Scholar]
  12. Onosaka S., Cherian M. G. Comparison of metallothionein determination by polarographic and cadmium-saturation methods. Toxicol Appl Pharmacol. 1982 Apr;63(2):270–274. doi: 10.1016/0041-008x(82)90049-7. [DOI] [PubMed] [Google Scholar]
  13. Onosaka S., Cherian M. G. The induced synthesis of metallothionein in various tissues of rat in response to metals. I. Effect of repeated injection of cadmium salts. Toxicology. 1981;22(2):91–101. doi: 10.1016/0300-483x(81)90109-8. [DOI] [PubMed] [Google Scholar]
  14. Onosaka S., Cherian M. G. The induced synthesis of metallothionein in various tissues of rats in response to metals. II. Influence of zinc status and specific effect on pancreatic metallothionein. Toxicology. 1982;23(1):11–20. doi: 10.1016/0300-483x(82)90037-3. [DOI] [PubMed] [Google Scholar]
  15. PISCATOR M. OM KADMIUM I NORMALA MAENNISKONJURAR SAMT REDOGOERELSE FOER ISOLERING AV METALLOTHIONEIN UR LEVER FRAN KADMIUMEXPONERADE KANINER. Nord Hyg Tidskr. 1964;45:76–82. [PubMed] [Google Scholar]
  16. Panemangalore M., Banerjee D., Onosaka S., Cherian M. G. Changes in the intracellular accumulation and distribution of metallothionein in rat liver and kidney during postnatal development. Dev Biol. 1983 May;97(1):95–102. doi: 10.1016/0012-1606(83)90067-2. [DOI] [PubMed] [Google Scholar]
  17. Piotrowski J. K., Trojanowska B., Sapota A. Binding of cadmium and mercury by metallothionein in the kidneys and liver of rats following repeated administration. Arch Toxicol. 1974;32(4):351–360. doi: 10.1007/BF00330118. [DOI] [PubMed] [Google Scholar]
  18. Piotrowski J. K., Trojanowska B., Wiśniewska-Knypl J. M., Bolanowska W. Mercury binding in the kidney and liver of rats repeatedly exposed to mercuric chloride: induction of metallothionein by mercury and cadmium. Toxicol Appl Pharmacol. 1974 Jan;27(1):11–19. doi: 10.1016/0041-008x(74)90169-0. [DOI] [PubMed] [Google Scholar]
  19. Sabbioni E., Marafante E. Accumulation of cadmium in rat liver cadmium binding protein following single and repeated cadmium administration. Environ Physiol Biochem. 1975;5(6):465–473. [PubMed] [Google Scholar]
  20. Sabbioni E., Marafante E. Heavy metals in rat liver cadmium binding protein. Environ Physiol Biochem. 1975;5(3):132–141. [PubMed] [Google Scholar]
  21. Tohyama C., Shaikh Z. A., Ellis K. J., Cohn S. H. Metallothionein excretion in urine upon cadmium exposure: its relationship with liver and kidney cadmium. Toxicology. 1981;22(3):181–191. doi: 10.1016/0300-483x(81)90080-9. [DOI] [PubMed] [Google Scholar]
  22. Vander Mallie R. J., Garvey J. S. Radioimmunoassay of metallothioneins. J Biol Chem. 1979 Sep 10;254(17):8416–8421. [PubMed] [Google Scholar]
  23. Webb M. Binding of cadmium ions by rat liver and kidney. Biochem Pharmacol. 1972 Oct 15;21(20):2751–2765. doi: 10.1016/0006-2952(72)90023-8. [DOI] [PubMed] [Google Scholar]
  24. Zelazowski A. J., Piotrowski J. K. A modified procedure for determination of metallothionein-like proteins in animal tissues. Acta Biochim Pol. 1977;24(2):97–103. [PubMed] [Google Scholar]
  25. Zelazowski A. J., Piotrowski J. K. The levels of metallothionein-like proteins in animal tissues. Experientia. 1977 Dec 15;33(12):1624–1625. doi: 10.1007/BF01934037. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES