Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1990 Apr;85:5–13. doi: 10.1289/ehp.85-1568332

Responses of the lung to toxic injury.

H Witschi 1
PMCID: PMC1568332  PMID: 2116962

Abstract

Analysis of toxic lung damage may focus on the offending agent and define patterns of bioactivation and interactions with the target tissues. It may also focus on a study of the biological response. While it was originally thought that cell proliferation, particularly Type II epithelial cell proliferation following lung injury, was a common event, it now has become obvious that on occasion proliferation occurs only late after the initial lung damage. Also Type II cell proliferation can occur in the absence of alveolar Type I cell damage. Delayed reepithelialization of the alveolar surface may lead to pulmonary fibrosis. Toxicological interactions often can be best recognized and defined by the extensive lesions that result from concomitant or sequential exposure to such toxic agents as ozone and acidic aerosols or anticancer drugs and oxygen. A correlation of cell proliferation and tumor development in mouse lung has shown that target cell hyperplasia is not a necessary prerequisite for enhanced tumor development. On the other hand, oxygen-induced proliferation of the neuroendocrine cell population results in the short-term development of neuroendocrine lung cell cancer in hamsters. While it is possible to draw some conclusions from an analysis of the lung response to toxic injury, predictions made from such knowledge are sometimes, but not necessarily always, correct.

Full text

PDF
12

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson I. Y., Bowden D. H., Cote M. G., Witschi H. Lung injury induced by butylated hydroxytoluene: cytodynamic and biochemical studies in mice. Lab Invest. 1977 Jan;36(1):26–32. [PubMed] [Google Scholar]
  2. Adamson I. Y., Bowden D. H. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest. 1974 Jan;30(1):35–42. [PubMed] [Google Scholar]
  3. Adamson I. Y., Young L., Bowden D. H. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol. 1988 Feb;130(2):377–383. [PMC free article] [PubMed] [Google Scholar]
  4. Adamson Y. I., Bowden D. H. Pulmonary injury and repair. Organ culture studies of murine lung after oxygen. Arch Pathol Lab Med. 1976 Dec;100(12):640–643. [PubMed] [Google Scholar]
  5. Amdur M. O., Underhill D. The effect of various aerosols on the response of guinea pigs to sulfur dioxide. Arch Environ Health. 1968 Apr;16(4):460–468. doi: 10.1080/00039896.1968.10665090. [DOI] [PubMed] [Google Scholar]
  6. Bils R. F., Christie B. R. The experimental pathology of oxidant and air pollutant inhalation. Int Rev Exp Pathol. 1980;21:195–293. [PubMed] [Google Scholar]
  7. Boutwell R. K. The function and mechanism of promoters of carcinogenesis. CRC Crit Rev Toxicol. 1974 Jan;2(4):419–443. doi: 10.3109/10408447309025704. [DOI] [PubMed] [Google Scholar]
  8. Boyd M. R. Biochemical mechanisms in chemical-induced lung injury: roles of metabolic activation. Crit Rev Toxicol. 1980 Aug;7(2):103–176. doi: 10.3109/10408448009037487. [DOI] [PubMed] [Google Scholar]
  9. Brody A. R., Soler P., Basset F., Haschek W. M., Witschi H. Epithelial-mesenchymal associations of cells in human pulmonary fibrosis and in BHT-oxygen-induced fibrosis in mice. Exp Lung Res. 1981 Aug;2(3):207–220. doi: 10.3109/01902148109052316. [DOI] [PubMed] [Google Scholar]
  10. Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
  11. Clark D. G., McElligott T. F., Hurst E. W. The toxicity of paraquat. Br J Ind Med. 1966 Apr;23(2):126–132. doi: 10.1136/oem.23.2.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crapo J. D., Tierney D. F. Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol. 1974 Jun;226(6):1401–1407. doi: 10.1152/ajplegacy.1974.226.6.1401. [DOI] [PubMed] [Google Scholar]
  13. Cutz E. Neuroendocrine cells of the lung. An overview of morphologic characteristics and development. Exp Lung Res. 1982 Nov;3(3-4):185–208. doi: 10.3109/01902148209069653. [DOI] [PubMed] [Google Scholar]
  14. Evans M. J., Dekker N. P., Cabral-Anderson L. J., Freeman G. Quantitation of damage to the alveolar epithelium by means of type 2 cell proliferation. Am Rev Respir Dis. 1978 Oct;118(4):787–790. doi: 10.1164/arrd.1978.118.4.787. [DOI] [PubMed] [Google Scholar]
  15. Fisher H. K., Clements J. A., Wright R. R. Enhancement of oxygen toxicity by the herbicide paraquat. Am Rev Respir Dis. 1973 Feb;107(2):246–252. doi: 10.1164/arrd.1973.107.2.246. [DOI] [PubMed] [Google Scholar]
  16. Goad M. E., Tryka A. F., Witschi H. P. Acute respiratory failure induced by bleomycin and hyperoxia: pulmonary edema, cell kinetics, and morphology. Toxicol Appl Pharmacol. 1987 Aug;90(1):10–22. doi: 10.1016/0041-008x(87)90301-2. [DOI] [PubMed] [Google Scholar]
  17. Gould V. E., Linnoila R. I., Memoli V. A., Warren W. H. Neuroendocrine components of the bronchopulmonary tract: hyperplasias, dysplasias, and neoplasms. Lab Invest. 1983 Nov;49(5):519–537. [PubMed] [Google Scholar]
  18. Gould V. E., Tosco R., Wheelis R. F., Gould N. S., Kapanci Y. Oxygen pneumonitis in man. Ultrastructural observations on the development of alveolar lesions. Lab Invest. 1972 May;26(5):499–508. [PubMed] [Google Scholar]
  19. Hackett N. A. Cell proliferation in lung following acute fly ash exposure. Toxicology. 1983 Jul-Aug;27(3-4):273–286. doi: 10.1016/0300-483x(83)90023-9. [DOI] [PubMed] [Google Scholar]
  20. Hage E. Histochemistry and fine structure of endocrine cells in foetal lungs of the rabbit, mouse and guinea-pig. Cell Tissue Res. 1974 Jun 24;149(4):513–524. doi: 10.1007/BF00223029. [DOI] [PubMed] [Google Scholar]
  21. Hakkinen P. J., Whiteley J. W., Witschi H. R. Hyperoxia, but not thoracic X-irradiation, potentiates bleomycin- and cyclophosphamide-induced lung damage in mice. Am Rev Respir Dis. 1982 Aug;126(2):281–285. doi: 10.1164/arrd.1982.126.2.281. [DOI] [PubMed] [Google Scholar]
  22. Haschek W. M., Klein-Szanto A. J., Last J. A., Reiser K. M., Witschi H. Long-term morphologic and biochemical features of experimentally induced lung fibrosis in the mouse. Lab Invest. 1982 Apr;46(4):438–449. [PubMed] [Google Scholar]
  23. Haschek W. M., Reiser K. M., Klein-Szanto A. J., Kehrer J. P., Smith L. H., Last J. A., Witschi H. P. Potentiation of butylated hydroxytoluene-induced acute lung damage by oxygen. Cell kinetics and collagen metabolism. Am Rev Respir Dis. 1983 Jan;127(1):28–34. doi: 10.1164/arrd.1983.127.1.28. [DOI] [PubMed] [Google Scholar]
  24. Haschek W. M., Witschi H. Pulmonary fibrosis--a possible mechanism. Toxicol Appl Pharmacol. 1979 Dec;51(3):475–487. doi: 10.1016/0041-008x(79)90372-7. [DOI] [PubMed] [Google Scholar]
  25. Hassett C., Mustafa M. G., Coulson W. F., Elashoff R. M. Murine lung carcinogenesis following exposure to ambient ozone concentrations. J Natl Cancer Inst. 1985 Oct;75(4):771–777. [PubMed] [Google Scholar]
  26. Heinrich U., Muhle H., Takenaka S., Ernst H., Fuhst R., Mohr U., Pott F., Stöber W. Chronic effects on the respiratory tract of hamsters, mice and rats after long-term inhalation of high concentrations of filtered and unfiltered diesel engine emissions. J Appl Toxicol. 1986 Dec;6(6):383–395. doi: 10.1002/jat.2550060602. [DOI] [PubMed] [Google Scholar]
  27. Hirai K., Yamauchi M., Witschi H., Côté M. G. Disintegration of lung peroxisomes during differentiation of type II cells to type I cells in butylated hydroxytoluene-administered mice. Exp Mol Pathol. 1983 Oct;39(2):129–138. doi: 10.1016/0014-4800(83)90046-1. [DOI] [PubMed] [Google Scholar]
  28. Iannuzzi M. C., Scoggin C. H. Small cell lung cancer. Am Rev Respir Dis. 1986 Sep;134(3):593–608. doi: 10.1164/arrd.1986.134.3.593. [DOI] [PubMed] [Google Scholar]
  29. Inayama Y. Promoting action of glycerol in pulmonary tumorigenesis model using a single administration of 4-nitroquinoline 1-oxide in mice. Jpn J Cancer Res. 1986 Apr;77(4):345–350. [PubMed] [Google Scholar]
  30. Kauffman S. L., Alexander L., Sass L. Histologic and ultrastructural features of the clara cell adenoma of the mouse lung. Lab Invest. 1979 Jun;40(6):708–716. [PubMed] [Google Scholar]
  31. Keeling P. L., Pratt I. S., Aldridge W. N., Smith L. L. The enhancement of paraquat toxicity in rats by 85% oxygen: lethality and cell-specific lung damage. Br J Exp Pathol. 1981 Dec;62(6):643–654. [PMC free article] [PubMed] [Google Scholar]
  32. Keeling P. L., Smith L. L. Relevance of NADPH depletion and mixed disulphide formation in rat lung to the mechanism of cell damage following paraquat administration. Biochem Pharmacol. 1982 Oct 15;31(20):3243–3249. doi: 10.1016/0006-2952(82)90557-3. [DOI] [PubMed] [Google Scholar]
  33. Kehrer J. P., Kacew S. Systematically applied chemicals that damage lung tissue. Toxicology. 1985 Jun 28;35(4):251–293. doi: 10.1016/0300-483x(85)90062-9. [DOI] [PubMed] [Google Scholar]
  34. Kehrer J. P., Witschi H. Effects of drug metabolism inhibitors on butylated hydroxytoluene-induced pulmonary toxicity in mice. Toxicol Appl Pharmacol. 1980 Apr;53(2):333–342. doi: 10.1016/0041-008x(80)90434-2. [DOI] [PubMed] [Google Scholar]
  35. Kensler T. W., Trush M. A. Role of oxygen radicals in tumor promotion. Environ Mutagen. 1984;6(4):593–616. doi: 10.1002/em.2860060412. [DOI] [PubMed] [Google Scholar]
  36. Kitamura H., Inayama Y., Ito T., Yabana M., Piegorsch W. W., Kanisawa M. Morphologic alteration of mouse Clara cells induced by glycerol: ultrastructural and morphometric studies. Exp Lung Res. 1987;12(4):281–302. doi: 10.3109/01902148709062841. [DOI] [PubMed] [Google Scholar]
  37. Last J. A., Gerriets J. E., Hyde D. M. Synergistic effects on rat lungs of mixtures of oxidant air pollutants (ozone or nitrogen dioxide) and respirable aerosols. Am Rev Respir Dis. 1983 Sep;128(3):539–544. doi: 10.1164/arrd.1983.128.3.539. [DOI] [PubMed] [Google Scholar]
  38. Last J. A., Hyde D. M., Chang D. P. A mechanism of synergistic lung damage by ozone and a respirable aerosol. Exp Lung Res. 1984;7(3-4):223–235. doi: 10.3109/01902148409087915. [DOI] [PubMed] [Google Scholar]
  39. Last J. A., Warren D. L., Pecquet-Goad E., Witschi H. Modification by ozone of lung tumor development in mice. J Natl Cancer Inst. 1987 Jan;78(1):149–154. doi: 10.1093/jnci/78.1.149. [DOI] [PubMed] [Google Scholar]
  40. Lauweryns J. M., Cokelaere M., Deleersynder M., Liebens M. Intrapulmonary neuro-epithelial bodies in newborn rabbits. Influence of hypoxia, hyperoxia, hypercapnia, nicotine, reserpine, L-DOPA and 5-HTP. Cell Tissue Res. 1977 Sep 5;182(4):425–440. doi: 10.1007/BF00219827. [DOI] [PubMed] [Google Scholar]
  41. Lauweryns J. M., Van Ranst L., Verhofstad A. A. Ultrastructural localization of serotonin in the intrapulmonary neuroepithelial bodies of neonatal rabbits by use of immunoelectron microscopy. Cell Tissue Res. 1986;243(3):455–459. doi: 10.1007/BF00218051. [DOI] [PubMed] [Google Scholar]
  42. Lindenschmidt R. C., Margaretten N., Griesemer R. A., Witschi H. P. Modification of lung tumor growth by hyperoxia. Carcinogenesis. 1986 Sep;7(9):1581–1586. doi: 10.1093/carcin/7.9.1581. [DOI] [PubMed] [Google Scholar]
  43. Lindenschmidt R. C., Tryka A. F., Witschi H. P. Inhibition of mouse lung tumor development by hyperoxia. Cancer Res. 1986 Apr;46(4 Pt 2):1994–2000. [PubMed] [Google Scholar]
  44. Linnoila R. I., Becker K. L., Silva O. L., Snider R. H., Moore C. F. Calcitonin as a marker for diethylnitrosamine-induced pulmonary endocrine cell hyperplasia in hamsters. Lab Invest. 1984 Jul;51(1):39–45. [PubMed] [Google Scholar]
  45. McClellan R. O. Health effects of exposure to diesel exhaust particles. Annu Rev Pharmacol Toxicol. 1987;27:279–300. doi: 10.1146/annurev.pa.27.040187.001431. [DOI] [PubMed] [Google Scholar]
  46. Morse C. C., Sigler C., Lock S., Hakkinen P. J., Haschek W. M., Witschi H. P. Pulmonary toxicity of cyclophosphamide: a 1-year study. Exp Mol Pathol. 1985 Apr;42(2):251–260. doi: 10.1016/0014-4800(85)90031-0. [DOI] [PubMed] [Google Scholar]
  47. Pack R. J., Barker S., Howe A. The effect of hypoxia on the number of amine-containing cells in the lung of the adult rat. Eur J Respir Dis. 1986 Feb;68(2):121–130. [PubMed] [Google Scholar]
  48. Rehm S., Ward J. M., ten Have-Opbroek A. A., Anderson L. M., Singh G., Katyal S. L., Rice J. M. Mouse papillary lung tumors transplacentally induced by N-nitrosoethylurea: evidence for alveolar type II cell origin by comparative light microscopic, ultrastructural, and immunohistochemical studies. Cancer Res. 1988 Jan 1;48(1):148–160. [PubMed] [Google Scholar]
  49. Reznik-Schüller H. Proliferation of endocrine (APUD-type) cells during early N-diethylnitrosamine-induced lung carcinogenesis in hamsters. Cancer Lett. 1976 May;1(5):255–258. doi: 10.1016/s0304-3835(75)97439-x. [DOI] [PubMed] [Google Scholar]
  50. Reznik-Schüller H. Ultrastructural alterations of APUD cells during nitrosamine-induced lung carcinogenesis. J Pathol. 1977 Feb;121(2):79–82. doi: 10.1002/path.1711210203. [DOI] [PubMed] [Google Scholar]
  51. Schuller H. M., Becker K. L., Witschi H. P. An animal model for neuroendocrine lung cancer. Carcinogenesis. 1988 Feb;9(2):293–296. doi: 10.1093/carcin/9.2.293. [DOI] [PubMed] [Google Scholar]
  52. Shami S. G., Evans M. J., Martinez L. A. Type II cell proliferation related to migration of inflammatory cells into the lung. Exp Mol Pathol. 1986 Jun;44(3):344–352. doi: 10.1016/0014-4800(86)90048-1. [DOI] [PubMed] [Google Scholar]
  53. Shami S. G., Wolff R. K., Hahn F. F., Brooks A. L., Griffith W. C. Early cytokinetic and morphological response of rat lungs to inhaled benzo(a)pyrene, gallium oxide, and SO2. Environ Res. 1985 Jun;37(1):12–25. doi: 10.1016/0013-9351(85)90045-3. [DOI] [PubMed] [Google Scholar]
  54. Shimkin M. B., Stoner G. D. Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res. 1975;21:1–58. doi: 10.1016/s0065-230x(08)60970-7. [DOI] [PubMed] [Google Scholar]
  55. Smith L. J. Lung damage induced by butylated hydroxytoluene in mice. Biochemical, cellular, and morphologic characterization. Am Rev Respir Dis. 1984 Nov;130(5):895–904. doi: 10.1164/arrd.1984.130.5.895. [DOI] [PubMed] [Google Scholar]
  56. Stanislawski E. C., Hernández-García J., de la Mora-Torres M. C., Abraján-Polanco E. Lung neuroendocrine structures. Topography, morphology, composition and relation with intrinsic asthma (non-immune). Arch Invest Med (Mex) 1981;12(4):559–577. [PubMed] [Google Scholar]
  57. Thaete L. G., Beer D. G., Malkinson A. M. Genetic variation in the proliferation of murine pulmonary type II cells: basal rates and alterations following urethan treatment. Cancer Res. 1986 Oct;46(10):5335–5338. [PubMed] [Google Scholar]
  58. Tryka A. F., Witschi H., Gosslee D. G., McArthur A. H., Clapp N. K. Patterns of cell proliferation during recovery from oxygen injury. Species differences. Am Rev Respir Dis. 1986 Jun;133(6):1055–1059. doi: 10.1164/arrd.1986.133.6.1055. [DOI] [PubMed] [Google Scholar]
  59. Tryka A. F., Witschi H., Lindenschmidt R. C. Progressive pulmonary fibrosis in rats: a biochemical, cell kinetic, and morphologic analysis. Exp Mol Pathol. 1985 Dec;43(3):348–358. doi: 10.1016/0014-4800(85)90071-1. [DOI] [PubMed] [Google Scholar]
  60. Weibel E. R. A note on differentiation and divisibility of alveolar epithelial cells. Chest. 1974 Apr;65(Suppl):19S–21S. doi: 10.1378/chest.65.4_supplement.19s. [DOI] [PubMed] [Google Scholar]
  61. White H. J., Garg B. D. Early pulmonary response of the rat lung to inhalation of high concentration of diesel particles. J Appl Toxicol. 1981 Apr;1(2):104–110. doi: 10.1002/jat.2550010209. [DOI] [PubMed] [Google Scholar]
  62. Witschi H. P. Enhanced tumour development by butylated hydroxytoluene (BHT) in the liver, lung and gastro-intestinal tract. Food Chem Toxicol. 1986 Oct-Nov;24(10-11):1127–1130. doi: 10.1016/0278-6915(86)90298-x. [DOI] [PubMed] [Google Scholar]
  63. Witschi H. P., Hakkinen P. J. The role of toxicological interactions in lung injury. Environ Health Perspect. 1984 Apr;55:139–148. doi: 10.1289/ehp.8455139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Witschi H. P. Separation of early diffuse alveolar cell proliferation from enhanced tumor development in mouse lung. Cancer Res. 1986 Jun;46(6):2675–2679. [PubMed] [Google Scholar]
  65. Witschi H., Côte M. G. Primary pulmonary responses to toxic agents. CRC Crit Rev Toxicol. 1977 May;5(1):23–66. doi: 10.3109/10408447709101341. [DOI] [PubMed] [Google Scholar]
  66. Witschi H., Cöté M. G. Inhibition of butylated hydroxytoluene-induced mouse lung cell division by oxygen: time-effect and dose-effect relationships. Chem Biol Interact. 1977 Dec;19(3):279–289. doi: 10.1016/0009-2797(77)90051-5. [DOI] [PubMed] [Google Scholar]
  67. Witschi H., Godfrey G., Frome E., Lindenschmidt R. C. Pulmonary toxicity of cytostatic drugs: cell kinetics. Fundam Appl Toxicol. 1987 Feb;8(2):253–262. doi: 10.1016/0272-0590(87)90124-2. [DOI] [PubMed] [Google Scholar]
  68. Witschi H., Malkinson A. M., Peraino C., Russell J. J., Staffeld E. F. Effects of glycerol on lung and liver tumor development. Fundam Appl Toxicol. 1989 Jul;13(1):174–180. doi: 10.1016/0272-0590(89)90317-5. [DOI] [PubMed] [Google Scholar]
  69. Witschi H., Williamson D., Lock S. Enhancement of urethan tumorigenesis in mouse lung by butylated hydroxytoluene. J Natl Cancer Inst. 1977 Feb;58(2):301–305. doi: 10.1093/jnci/58.2.301. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES