Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1983 Jan;47:189–199. doi: 10.1289/ehp.8347189

Biomedically relevant chemical and physical properties of coal combustion products.

G L Fisher
PMCID: PMC1569392  PMID: 6337824

Abstract

The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes.

Full text

PDF
190

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarie Y. C., Krumm A. A., Busey W. M., Urich C. E., Kantz R. J. Long-term exposure to sulfur dioxide, sulfuric acid mist, fly ash, and their mixtures. Results of Studies in Monkeys and guinea pigs. Arch Environ Health. 1975 May;30(5):254–262. doi: 10.1080/00039896.1975.10666692. [DOI] [PubMed] [Google Scholar]
  2. Bjørseth A., Eidså G., Gether J., Landmark L., Møller M. Detection of mutagens in complex samples by the Salmonella assay applied directly on thin-layer chromatography plates. Science. 1982 Jan 1;215(4528):87–89. doi: 10.1126/science.7031897. [DOI] [PubMed] [Google Scholar]
  3. Bumb R. R., Crummett W. B., Cutie S. S., Gledhill J. R., Hummel R. H., Kagel R. O., Lamparski L. L., Luoma E. V., Miller D. L., Nestrick T. J. Trace chemistries of fire: a source of chlorinated dioxins. Science. 1980 Oct;210(4468):385–390. doi: 10.1126/science.6159682. [DOI] [PubMed] [Google Scholar]
  4. Chrisp C. E., Fisher G. L., Lammert J. E. Mutagenicity of filtrates from respirable coal fly ash. Science. 1978 Jan 6;199(4324):73–75. doi: 10.1126/science.199.4324.73. [DOI] [PubMed] [Google Scholar]
  5. De Jong D., Morse R. A., Gutenmann W. H., Lisk D. J. Selenium in pollen gathered by bees foraging on fly ash-grown plants. Bull Environ Contam Toxicol. 1977 Oct;18(4):442–444. doi: 10.1007/BF01683714. [DOI] [PubMed] [Google Scholar]
  6. Fisher G. L., Chang D. P., Brummer M. Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres. Science. 1976 May 7;192(4239):553–555. doi: 10.1126/science.192.4239.553. [DOI] [PubMed] [Google Scholar]
  7. Fisher G. L., Chrisp C. E., Raabe O. G. Physical factors affecting the mutagenicity of fly ash from a coal-fired power plant. Science. 1979 May 25;204(4395):879–881. doi: 10.1126/science.375394. [DOI] [PubMed] [Google Scholar]
  8. Fisher G. L., Wilson F. D. The effects of coal fly ash and silica inhalation of macrophage function and progenitors. J Reticuloendothel Soc. 1980 May;27(5):513–524. [PubMed] [Google Scholar]
  9. Hayes T. L., Pawley J. B., Fisher G. L., Goldman M. A model for the exposure of individual lung cells to the foreign elements contained in fly ash. Environ Res. 1980 Aug;22(2):499–509. doi: 10.1016/0013-9351(80)90161-9. [DOI] [PubMed] [Google Scholar]
  10. Kimble B. J., Gross M. L. Tetrachlorodibenzo-p-dioxin quantitation in stack-collected coal fly ash. Science. 1980 Jan 4;207(4426):59–61. doi: 10.1126/science.7350642. [DOI] [PubMed] [Google Scholar]
  11. Korfmacher W. A., Natusch D. F., Taylor D. R., Mamantov G., Wehry E. L. Oxidative transformations of polycyclic aromatic hydrocarbons adsorbed on coal fly ash. Science. 1980 Feb 15;207(4432):763–765. doi: 10.1126/science.7352284. [DOI] [PubMed] [Google Scholar]
  12. Kubitschek H. E., Venta L. Mutagenicity of coal fly ash from electric power plant precipitators. Environ Mutagen. 1979;1(1):79–82. doi: 10.1002/em.2860010114. [DOI] [PubMed] [Google Scholar]
  13. Lee M. L., Later D. W., Rollins D. K., Eatough D. J., Hansen L. D. Dimethyl and monomethyl sulfate: presence in coal fly ash and airborne particulate matter. Science. 1980 Jan 11;207(4427):186–188. doi: 10.1126/science.7350652. [DOI] [PubMed] [Google Scholar]
  14. Linton R. W., Loh A., Natusch D. F., Evans C. A., Jr, Williams P. Surface predominance of trace elements in airborne particles. Science. 1976 Feb 27;191(4229):852–854. doi: 10.1126/science.1251197. [DOI] [PubMed] [Google Scholar]
  15. Linton R. W., Williams P., Evans C. A., Jr, Natusch D. F. Determination of the surface predominance of toxic elements in airborne particles by ion microprobe mass spectrometry and Auger electron spectrometry. Anal Chem. 1977 Sep;49(11):1514–1521. doi: 10.1021/ac50019a015. [DOI] [PubMed] [Google Scholar]
  16. McElroy M. W., Carr R. C., Ensor D. S., Markowski G. R. Size distribution of fine particles from coal combustion. Science. 1982 Jan 1;215(4528):13–19. doi: 10.1126/science.215.4528.13. [DOI] [PubMed] [Google Scholar]
  17. Natusch D. F. Potentially carcinogenic species emitted to the atmosphere by fossil-fueled power plants. Environ Health Perspect. 1978 Feb;22:79–90. doi: 10.1289/ehp.782279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Natusch D. F., Wallace J. R., Evans C. A., Jr Toxic trace elements: preferential concentration in respirable particles. Science. 1974 Jan 18;183(4121):202–204. doi: 10.1126/science.183.4121.202. [DOI] [PubMed] [Google Scholar]
  19. Natusch D. F., Wallace J. R. Urban aerosol toxicity: the influence of particle size. Science. 1974 Nov 22;186(4165):695–699. doi: 10.1126/science.186.4165.695. [DOI] [PubMed] [Google Scholar]
  20. Pawley J. B., Fisher G. L. Using simultaneous three colour X-ray mapping and digital-scan-stop for rapid elemental characterization of coal combustion by-products. J Microsc. 1977 Jul;110(2):87–101. doi: 10.1111/j.1365-2818.1977.tb00019.x. [DOI] [PubMed] [Google Scholar]
  21. Pitts J. N., Jr, Van Cauwenberghe K. A., Grosjean D., Schmid J. P., Fitz D. R., Belser W. L., Knudson G. P., Hynds P. M. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science. 1978 Nov 3;202(4367):515–519. doi: 10.1126/science.705341. [DOI] [PubMed] [Google Scholar]
  22. Smith-Sonneborn J., Fisher G. L., Palizzi R. A., Herr C. Mutagenicity of coal fly ash: a new bioassay for mutagenic potential in a particle feeding ciliate. Environ Mutagen. 1981;3(3):239–252. doi: 10.1002/em.2860030307. [DOI] [PubMed] [Google Scholar]
  23. Smith-Sonneborn J., Palizzi R. A., Herr C., Fisher G. L. Mutagenicity of fly ash particles in Paramecium. Science. 1981 Jan 9;211(4478):180–182. doi: 10.1126/science.7444461. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES