Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Jul;9(7):1225–1234. doi: 10.1105/tpc.9.7.1225

Light modulation of vegetative development.

J Chory 1
PMCID: PMC156993  PMID: 9254936

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  2. Ahmad M., Cashmore A. R. Seeing blue: the discovery of cryptochrome. Plant Mol Biol. 1996 Mar;30(5):851–861. doi: 10.1007/BF00020798. [DOI] [PubMed] [Google Scholar]
  3. Ahmad M., Lin C., Cashmore A. R. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J. 1995 Nov;8(5):653–658. doi: 10.1046/j.1365-313x.1995.08050653.x. [DOI] [PubMed] [Google Scholar]
  4. Baylies M. K., Vosshall L. B., Sehgal A., Young M. W. New short period mutations of the Drosophila clock gene per. Neuron. 1992 Sep;9(3):575–581. doi: 10.1016/0896-6273(92)90194-i. [DOI] [PubMed] [Google Scholar]
  5. Botto J. F., Sanchez R. A., Whitelam G. C., Casal J. J. Phytochrome A Mediates the Promotion of Seed Germination by Very Low Fluences of Light and Canopy Shade Light in Arabidopsis. Plant Physiol. 1996 Feb;110(2):439–444. doi: 10.1104/pp.110.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boylan M., Douglas N., Quail P. H. Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor. Plant Cell. 1994 Mar;6(3):449–460. doi: 10.1105/tpc.6.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cherry J. R., Hondred D., Walker J. M., Vierstra R. D. Phytochrome requires the 6-kDa N-terminal domain for full biological activity. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5039–5043. doi: 10.1073/pnas.89.11.5039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chory J. Light signals in leaf and chloroplast development: photoreceptors and downstream responses in search of a transduction pathway. New Biol. 1991 Jun;3(6):538–548. [PubMed] [Google Scholar]
  9. Christie J. M., Jenkins G. I. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell. 1996 Sep;8(9):1555–1567. doi: 10.1105/tpc.8.9.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clack T., Mathews S., Sharrock R. A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol. 1994 Jun;25(3):413–427. doi: 10.1007/BF00043870. [DOI] [PubMed] [Google Scholar]
  11. Crews S. T., Thomas J. B., Goodman C. S. The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell. 1988 Jan 15;52(1):143–151. doi: 10.1016/0092-8674(88)90538-7. [DOI] [PubMed] [Google Scholar]
  12. Deforce L., Tomizawa K., Ito N., Farrens D., Song P. S., Furuya M. In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10392–10396. doi: 10.1073/pnas.88.23.10392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dehesh K., Franci C., Parks B. M., Seeley K. A., Short T. W., Tepperman J. M., Quail P. H. Arabidopsis HY8 locus encodes phytochrome A. Plant Cell. 1993 Sep;5(9):1081–1088. doi: 10.1105/tpc.5.9.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Deng X. W. Fresh view of light signal transduction in plants. Cell. 1994 Feb 11;76(3):423–426. doi: 10.1016/0092-8674(94)90107-4. [DOI] [PubMed] [Google Scholar]
  15. Elich T. D., Chory J. Initial events in phytochrome signalling: still in the dark. Plant Mol Biol. 1994 Dec;26(5):1315–1327. doi: 10.1007/BF00016477. [DOI] [PubMed] [Google Scholar]
  16. Emmler K., Stockhaus J., Chua N. H., Schäfer E. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings. Planta. 1995;197(1):103–110. doi: 10.1007/BF00239945. [DOI] [PubMed] [Google Scholar]
  17. Gao J., Kaufman L. S. Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene. Plant Physiol. 1994 Apr;104(4):1251–1257. doi: 10.1104/pp.104.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gärtner W., Hill C., Worm K., Braslavsky S. E., Schaffner K. Influence of expression system on chromophore binding and preservation of spectral properties in recombinant phytochrome A. Eur J Biochem. 1996 Mar 15;236(3):978–983. doi: 10.1111/j.1432-1033.1996.00978.x. [DOI] [PubMed] [Google Scholar]
  19. Hill C., Gärtner W., Towner P., Braslavsky S. E., Schaffner K. Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and formation of photoactive chromoproteins by assembly with phycocyanobilin. Eur J Biochem. 1994 Jul 1;223(1):69–77. doi: 10.1111/j.1432-1033.1994.tb18967.x. [DOI] [PubMed] [Google Scholar]
  20. Huang Z. J., Edery I., Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature. 1993 Jul 15;364(6434):259–262. doi: 10.1038/364259a0. [DOI] [PubMed] [Google Scholar]
  21. Hughes J., Lamparter T., Mittmann F., Hartmann E., Gärtner W., Wilde A., Börner T. A prokaryotic phytochrome. Nature. 1997 Apr 17;386(6626):663–663. doi: 10.1038/386663a0. [DOI] [PubMed] [Google Scholar]
  22. Jordan E. T., Cherry J. R., Walker J. M., Vierstra R. D. The amino-terminus of phytochrome A contains two distinct functional domains. Plant J. 1996 Feb;9(2):243–257. doi: 10.1046/j.1365-313x.1996.09020243.x. [DOI] [PubMed] [Google Scholar]
  23. Kaufman L. S., Thompson W. F., Briggs W. R. Different Red Light Requirements for Phytochrome-Induced Accumulation of cab RNA and rbcS RNA. Science. 1984 Dec 21;226(4681):1447–1449. doi: 10.1126/science.226.4681.1447. [DOI] [PubMed] [Google Scholar]
  24. Kehoe D. M., Grossman A. R. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science. 1996 Sep 6;273(5280):1409–1412. doi: 10.1126/science.273.5280.1409. [DOI] [PubMed] [Google Scholar]
  25. Kreps J. A., Kay S. A. Coordination of Plant Metabolism and Development by the Circadian Clock. Plant Cell. 1997 Jul;9(7):1235–1244. doi: 10.1105/tpc.9.7.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kunkel T., Tomizawa K., Kern R., Furuya M., Chua N. H., Schäfer E. In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Eur J Biochem. 1993 Aug 1;215(3):587–594. doi: 10.1111/j.1432-1033.1993.tb18069.x. [DOI] [PubMed] [Google Scholar]
  27. Lagarias D. M., Wu S. H., Lagarias J. C. Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Mol Biol. 1995 Dec;29(6):1127–1142. doi: 10.1007/BF00020457. [DOI] [PubMed] [Google Scholar]
  28. Lin C., Ahmad M., Gordon D., Cashmore A. R. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8423–8427. doi: 10.1073/pnas.92.18.8423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lin C., Robertson D. E., Ahmad M., Raibekas A. A., Jorns M. S., Dutton P. L., Cashmore A. R. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science. 1995 Aug 18;269(5226):968–970. doi: 10.1126/science.7638620. [DOI] [PubMed] [Google Scholar]
  30. Liscum E., Briggs W. R. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell. 1995 Apr;7(4):473–485. doi: 10.1105/tpc.7.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Malhotra K., Kim S. T., Batschauer A., Dawut L., Sancar A. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry. 1995 May 23;34(20):6892–6899. doi: 10.1021/bi00020a037. [DOI] [PubMed] [Google Scholar]
  32. Nagatani A., Reed J. W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. doi: 10.1104/pp.102.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parks B. M., Quail P. H., Hangarter R. P. Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol. 1996 Jan;110(1):155–162. doi: 10.1104/pp.110.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parks B. M., Quail P. H. Phytochrome-Deficient hy1 and hy2 Long Hypocotyl Mutants of Arabidopsis Are Defective in Phytochrome Chromophore Biosynthesis. Plant Cell. 1991 Nov;3(11):1177–1186. doi: 10.1105/tpc.3.11.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Parks B. M., Quail P. H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. doi: 10.1105/tpc.5.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  37. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reymond P., Short T. W., Briggs W. R., Poff K. L. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 May;89(10):4718–4721. doi: 10.1073/pnas.89.10.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sakamoto K., Nagatani A. Nuclear localization activity of phytochrome B. Plant J. 1996 Nov;10(5):859–868. doi: 10.1046/j.1365-313x.1996.10050859.x. [DOI] [PubMed] [Google Scholar]
  40. Schneider-Poetsch H. A. Signal transduction by phytochrome: phytochromes have a module related to the transmitter modules of bacterial sensor proteins. Photochem Photobiol. 1992 Nov;56(5):839–846. doi: 10.1111/j.1751-1097.1992.tb02241.x. [DOI] [PubMed] [Google Scholar]
  41. Shinomura T., Nagatani A., Chory J., Furuya M. The Induction of Seed Germination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A. Plant Physiol. 1994 Feb;104(2):363–371. doi: 10.1104/pp.104.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shinomura T., Nagatani A., Hanzawa H., Kubota M., Watanabe M., Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8129–8133. doi: 10.1073/pnas.93.15.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stockhaus J., Nagatani A., Halfter U., Kay S., Furuya M., Chua N. H. Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity. Genes Dev. 1992 Dec;6(12A):2364–2372. doi: 10.1101/gad.6.12a.2364. [DOI] [PubMed] [Google Scholar]
  45. Terry M. J., Wahleithner J. A., Lagarias J. C. Biosynthesis of the plant photoreceptor phytochrome. Arch Biochem Biophys. 1993 Oct;306(1):1–15. doi: 10.1006/abbi.1993.1473. [DOI] [PubMed] [Google Scholar]
  46. Trewavas A. J., Malho R. Signal Perception and Transduction: The Origin of the Phenotype. Plant Cell. 1997 Jul;9(7):1181–1195. doi: 10.1105/tpc.9.7.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vierstra R. D. Illuminating Phytochrome Functions (There Is Light at the End of the Tunnel). Plant Physiol. 1993 Nov;103(3):679–684. doi: 10.1104/pp.103.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wagner D., Fairchild C. D., Kuhn R. M., Quail P. H. Chromophore-bearing NH2-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4011–4015. doi: 10.1073/pnas.93.9.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wagner D., Koloszvari M., Quail P. H. Two Small Spatially Distinct Regions of Phytochrome B Are Required for Efficient Signaling Rates. Plant Cell. 1996 May;8(5):859–871. doi: 10.1105/tpc.8.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wagner D., Quail P. H. Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8596–8600. doi: 10.1073/pnas.92.19.8596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wahleithner J. A., Li L. M., Lagarias J. C. Expression and assembly of spectrally active recombinant holophytochrome. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10387–10391. doi: 10.1073/pnas.88.23.10387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Warpeha K. M., Kaufman L. S. Two distinct blue-light responses regulate epicotyl elongation in pea. Plant Physiol. 1990 Feb;92(2):495–499. doi: 10.1104/pp.92.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES