Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Aug;9(8):1327–1338. doi: 10.1105/tpc.9.8.1327

FPF1 promotes flowering in Arabidopsis.

T Kania 1, D Russenberger 1, S Peng 1, K Apel 1, S Melzer 1
PMCID: PMC157001  PMID: 9286110

Abstract

We have characterized the gene flowering promoting factor1 (FPF1), which is expressed in apical meristems immediately after the photoperiodic induction of flowering in the long-day plants mustard and Arabidopsis. In early transition stages, expression is only detectable in the peripheral zone of apical meristems; however, later on, it can also be found in floral meristems and in axillary meristems that form secondary inflorescences. The FPF1 gene encodes a 12.6-kD protein that has no homology to any previously identified protein of known function. Constitutive expression of the gene in Arabidopsis under control of the cauliflower mosaic virus 35S promoter resulted in a dominant heritable trait of early flowering under both short- and long-day conditions. Treatments with gibberellin (GA) and paclobutrazol, a GA biosynthesis inhibitor, as well as crosses with GA-deficient mutants indicate that FPF1 is involved in a GA-dependent signaling pathway and modulates a GA response in apical meristems during the transition to flowering.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernier G., Havelange A., Houssa C., Petitjean A., Lejeune P. Physiological Signals That Induce Flowering. Plant Cell. 1993 Oct;5(10):1147–1155. doi: 10.1105/tpc.5.10.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coen E. S., Romero J. M., Doyle S., Elliott R., Murphy G., Carpenter R. floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell. 1990 Dec 21;63(6):1311–1322. doi: 10.1016/0092-8674(90)90426-f. [DOI] [PubMed] [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holtorf S., Apel K., Bohlmann H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol. 1995 Nov;29(4):637–646. doi: 10.1007/BF00041155. [DOI] [PubMed] [Google Scholar]
  6. Huijser P., Klein J., Lönnig W. E., Meijer H., Saedler H., Sommer H. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 1992 Apr;11(4):1239–1249. doi: 10.1002/j.1460-2075.1992.tb05168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Höfgen R., Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988 Oct 25;16(20):9877–9877. doi: 10.1093/nar/16.20.9877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobsen S. E., Olszewski N. E. Characterization of the Arrest in Anther Development Associated with Gibberellin Deficiency of the gib-1 Mutant of Tomato. Plant Physiol. 1991 Sep;97(1):409–414. doi: 10.1104/pp.97.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobsen S. E., Olszewski N. E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993 Aug;5(8):887–896. doi: 10.1105/tpc.5.8.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koornneef M., Hanhart C. J., van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 1991 Sep;229(1):57–66. doi: 10.1007/BF00264213. [DOI] [PubMed] [Google Scholar]
  11. Lee I., Aukerman M. J., Gore S. L., Lohman K. N., Michaels S. D., Weaver L. M., John M. C., Feldmann K. A., Amasino R. M. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell. 1994 Jan;6(1):75–83. doi: 10.1105/tpc.6.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mandel M. A., Gustafson-Brown C., Savidge B., Yanofsky M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992 Nov 19;360(6401):273–277. doi: 10.1038/360273a0. [DOI] [PubMed] [Google Scholar]
  13. Mandel M. A., Yanofsky M. F. A gene triggering flower formation in Arabidopsis. Nature. 1995 Oct 12;377(6549):522–524. doi: 10.1038/377522a0. [DOI] [PubMed] [Google Scholar]
  14. Mandel M. A., Yanofsky M. F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell. 1995 Nov;7(11):1763–1771. doi: 10.1105/tpc.7.11.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McDaniel C. N., Singer S. R., Smith S. M. Development states associated with the floral transition. Dev Biol. 1992 Sep;153(1):59–69. doi: 10.1016/0012-1606(92)90091-t. [DOI] [PubMed] [Google Scholar]
  16. Melzer S., Majewski D. M., Apel K. Early Changes in Gene Expression during the Transition from Vegetative to Generative Growth in the Long-Day Plant Sinapis alba. Plant Cell. 1990 Oct;2(10):953–961. doi: 10.1105/tpc.2.10.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Menzel G., Apel K., Melzer S. Identification of two MADS box genes that are expressed in the apical meristem of the long-day plant Sinapis alba in transition to flowering. Plant J. 1996 Mar;9(3):399–408. doi: 10.1046/j.1365-313x.1996.09030399.x. [DOI] [PubMed] [Google Scholar]
  18. Okamuro J. K., den Boer B. G., Lotys-Prass C., Szeto W., Jofuku K. D. Flowers into shoots: photo and hormonal control of a meristem identity switch in Arabidopsis. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13831–13836. doi: 10.1073/pnas.93.24.13831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Phillips A. L., Ward D. A., Uknes S., Appleford N. E., Lange T., Huttly A. K., Gaskin P., Graebe J. E., Hedden P. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 1995 Jul;108(3):1049–1057. doi: 10.1104/pp.108.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Putterill J., Robson F., Lee K., Simon R., Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell. 1995 Mar 24;80(6):847–857. doi: 10.1016/0092-8674(95)90288-0. [DOI] [PubMed] [Google Scholar]
  21. Reed J. W., Foster K. R., Morgan P. W., Chory J. Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol. 1996 Sep;112(1):337–342. doi: 10.1104/pp.112.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Simon R., Igeño M. I., Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature. 1996 Nov 7;384(6604):59–62. doi: 10.1038/384059a0. [DOI] [PubMed] [Google Scholar]
  23. Talon M., Zeevaart J. A., Gage D. A. Identification of Gibberellins in Spinach and Effects of Light and Darkness on their Levels. Plant Physiol. 1991 Dec;97(4):1521–1526. doi: 10.1104/pp.97.4.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weigel D., Alvarez J., Smyth D. R., Yanofsky M. F., Meyerowitz E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992 May 29;69(5):843–859. doi: 10.1016/0092-8674(92)90295-n. [DOI] [PubMed] [Google Scholar]
  25. Weigel D., Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995 Oct 12;377(6549):495–500. doi: 10.1038/377495a0. [DOI] [PubMed] [Google Scholar]
  26. Weigel D. The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet. 1995;29:19–39. doi: 10.1146/annurev.ge.29.120195.000315. [DOI] [PubMed] [Google Scholar]
  27. Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wu K., Li L., Gage D. A., Zeevaart J. A. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol. 1996 Feb;110(2):547–554. doi: 10.1104/pp.110.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zeevaart J. A., Gage D. A. ent-kaurene biosynthesis is enhanced by long photoperiods in the long-day plants Spinacia oleracea L. and Agrostemma githago L. Plant Physiol. 1993 Jan;101(1):25–29. doi: 10.1104/pp.101.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES