Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Sep;9(9):1559–1572. doi: 10.1105/tpc.9.9.1559

Two Distinct Sources of Elicited Reactive Oxygen Species in Tobacco Epidermal Cells.

A C Allan 1, R Fluhr 1
PMCID: PMC157033  PMID: 12237396

Abstract

Reactive oxygen species (ROS) play a prominent role in early and later stages of the plant pathogenesis response, putatively acting as both cellular signaling molecules and direct antipathogen agents. A single-cell assay, based on the fluorescent probe dichlorofluorescein, was used to scrutinize the generation and movement of ROS in tobacco epidermal tissue. ROS, generated within cells, quickly moved apoplastically as H2O2 into neighboring cells. Two classes of rapidly elicited intracellular ROS, originating from distinct sources, were distinguished. Cryptogein, the fungal elicitor from Phytophthora cryptogea, induced ROS from a flavin-containing oxidase source. ROS accumulation could be inhibited by a number of pharmacological agents, suggesting induction through an active signal transduction pathway. The insensitivity of the increase in ROS to the external addition of enzymes that dissipate ROS suggests that this oxidative increase is primarily intracellular. In contrast, amines and polyamines, compounds that form during wounding and pathogenesis, induced ROS at an apoplastic site from peroxidase- or amine oxidase-type enzyme(s). Salicylic acid, a putative inhibitor of cellular catalases and peroxidases, did not induce cellular ROS, as measured by dichlorofluorescein fluorescence. The physiological relevance of ROS-generated signals was indicated by the rapid alteration of the epidermal cell glutathione pool and the cellular redox state. In addition, induction of ROS by all elicitors was correlated with subsequent cell death.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrò A. F., Rossi A. Copper-containing plant oxidases. Biochem Soc Trans. 1992 May;20(2):369–373. doi: 10.1042/bst0200369. [DOI] [PubMed] [Google Scholar]
  2. Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker M. A., Cerniglia G. J., Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem. 1990 Nov 1;190(2):360–365. doi: 10.1016/0003-2697(90)90208-q. [DOI] [PubMed] [Google Scholar]
  4. Bi Y. M., Kenton P., Mur L., Darby R., Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 1995 Aug;8(2):235–245. doi: 10.1046/j.1365-313x.1995.08020235.x. [DOI] [PubMed] [Google Scholar]
  5. Cathcart R., Schwiers E., Ames B. N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem. 1983 Oct 1;134(1):111–116. doi: 10.1016/0003-2697(83)90270-1. [DOI] [PubMed] [Google Scholar]
  6. Chandra S., Martin G. B., Low P. S. The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13393–13397. doi: 10.1073/pnas.93.23.13393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  8. Devary Y., Gottlieb R. A., Smeal T., Karin M. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell. 1992 Dec 24;71(7):1081–1091. doi: 10.1016/s0092-8674(05)80058-3. [DOI] [PubMed] [Google Scholar]
  9. Dietrich R. A., Richberg M. H., Schmidt R., Dean C., Dangl J. L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell. 1997 Mar 7;88(5):685–694. doi: 10.1016/s0092-8674(00)81911-x. [DOI] [PubMed] [Google Scholar]
  10. Doke N., Miura Y., Sanchez L. M., Park H. J., Noritake T., Yoshioka H., Kawakita K. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence--a review. Gene. 1996 Nov 7;179(1):45–51. doi: 10.1016/s0378-1119(96)00423-4. [DOI] [PubMed] [Google Scholar]
  11. Doussière J., Vignais P. V. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Eur J Biochem. 1992 Aug 15;208(1):61–71. doi: 10.1111/j.1432-1033.1992.tb17159.x. [DOI] [PubMed] [Google Scholar]
  12. Green R., Fluhr R. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species. Plant Cell. 1995 Feb;7(2):203–212. doi: 10.1105/tpc.7.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Groom Q. J., Torres M. A., Fordham-Skelton A. P., Hammond-Kosack K. E., Robinson N. J., Jones J. D. rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J. 1996 Sep;10(3):515–522. doi: 10.1046/j.1365-313x.1996.10030515.x. [DOI] [PubMed] [Google Scholar]
  14. Hammond-Kosack K. E., Jones J. D. Resistance gene-dependent plant defense responses. Plant Cell. 1996 Oct;8(10):1773–1791. doi: 10.1105/tpc.8.10.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang R. P., Wu J. X., Fan Y., Adamson E. D. UV activates growth factor receptors via reactive oxygen intermediates. J Cell Biol. 1996 Apr;133(1):211–220. doi: 10.1083/jcb.133.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Håkansson G., Allen J. F. Histidine and tyrosine phosphorylation in pea mitochondria: evidence for protein phosphorylation in respiratory redox signalling. FEBS Lett. 1995 Sep 25;372(2-3):238–242. doi: 10.1016/0014-5793(95)00990-q. [DOI] [PubMed] [Google Scholar]
  17. Jabs T., Dietrich R. A., Dangl J. L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science. 1996 Sep 27;273(5283):1853–1856. doi: 10.1126/science.273.5283.1853. [DOI] [PubMed] [Google Scholar]
  18. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  19. Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. May M. J., Hammond-Kosack K. E., Jones JDG. Involvement of Reactive Oxygen Species, Glutathione Metabolism, and Lipid Peroxidation in the Cf-Gene-Dependent Defense Response of Tomato Cotyledons Induced by Race-Specific Elicitors of Cladosporium fulvum. Plant Physiol. 1996 Apr;110(4):1367–1379. doi: 10.1104/pp.110.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murphy T. M., Auh C. K. The Superoxide Synthases of Plasma Membrane Preparations from Cultured Rose Cells. Plant Physiol. 1996 Feb;110(2):621–629. doi: 10.1104/pp.110.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naton B., Hahlbrock K., Schmelzer E. Correlation of Rapid Cell Death with Metabolic Changes in Fungus-Infected, Cultured Parsley Cells. Plant Physiol. 1996 Sep;112(1):433–444. doi: 10.1104/pp.112.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ori N., Eshed Y., Pinto P., Paran I., Zamir D., Fluhr R. TAO1, a representative of the molybdenum cofactor containing hydroxylases from tomato. J Biol Chem. 1997 Jan 10;272(2):1019–1025. doi: 10.1074/jbc.272.2.1019. [DOI] [PubMed] [Google Scholar]
  25. Rao K. M., Padmanabhan J., Kilby D. L., Cohen H. J., Currie M. S., Weinberg J. B. Flow cytometric analysis of nitric oxide production in human neutrophils using dichlorofluorescein diacetate in the presence of a calmodulin inhibitor. J Leukoc Biol. 1992 May;51(5):496–500. doi: 10.1002/jlb.51.5.496. [DOI] [PubMed] [Google Scholar]
  26. Rao M. V., Paliyath G., Ormrod D. P. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996 Jan;110(1):125–136. doi: 10.1104/pp.110.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ricci P., Bonnet P., Huet J. C., Sallantin M., Beauvais-Cante F., Bruneteau M., Billard V., Michel G., Pernollet J. C. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem. 1989 Aug 15;183(3):555–563. doi: 10.1111/j.1432-1033.1989.tb21084.x. [DOI] [PubMed] [Google Scholar]
  28. Schreck R., Albermann K., Baeuerle P. A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17(4):221–237. doi: 10.3109/10715769209079515. [DOI] [PubMed] [Google Scholar]
  29. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science. 1996 Dec 20;274(5295):2063–2065. doi: 10.1126/science.274.5295.2063. [DOI] [PubMed] [Google Scholar]
  30. Segal A. W., Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci. 1993 Feb;18(2):43–47. doi: 10.1016/0968-0004(93)90051-n. [DOI] [PubMed] [Google Scholar]
  31. Sen C. K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996 May;10(7):709–720. doi: 10.1096/fasebj.10.7.8635688. [DOI] [PubMed] [Google Scholar]
  32. Tavernier E., Wendehenne D., Blein J. P., Pugin A. Involvement of Free Calcium in Action of Cryptogein, a Proteinaceous Elicitor of Hypersensitive Reaction in Tobacco Cells. Plant Physiol. 1995 Nov;109(3):1025–1031. doi: 10.1104/pp.109.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vera-Estrella R., Blumwald E., Higgins V. J. Effect of Specific Elicitors of Cladosporium fulvum on Tomato Suspension Cells : Evidence for the Involvement of Active Oxygen Species. Plant Physiol. 1992 Jul;99(3):1208–1215. doi: 10.1104/pp.99.3.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Viard M. P., Martin F., Pugin A., Ricci P., Blein J. P. Protein Phosphorylation Is Induced in Tobacco Cells by the Elicitor Cryptogein. Plant Physiol. 1994 Apr;104(4):1245–1249. doi: 10.1104/pp.104.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vowells S. J., Sekhsaria S., Malech H. L., Shalit M., Fleisher T. A. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods. 1995 Jan 13;178(1):89–97. doi: 10.1016/0022-1759(94)00247-t. [DOI] [PubMed] [Google Scholar]
  36. Wu X., Bishopric N. H., Discher D. J., Murphy B. J., Webster K. A. Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol Cell Biol. 1996 Mar;16(3):1035–1046. doi: 10.1128/mcb.16.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yang Y., Klessig D. F. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14972–14977. doi: 10.1073/pnas.93.25.14972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES