Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Mar;107(3):873–883. doi: 10.1104/pp.107.3.873

Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant.

M Król 1, M D Spangfort 1, N P Huner 1, G Oquist 1, P Gustafsson 1, S Jansson 1
PMCID: PMC157204  PMID: 7748263

Abstract

Monospecific polyclonal antibodies have been raised against synthetic peptides derived from the primary sequences from different plant light-harvesting Chl a/b-binding (LHC) proteins. Together with other monospecific antibodies, these were used to quantify the levels of the 10 different LHC proteins in wild-type and chlorina f2 barley (Hordeum vulgare L.), grown under normal and intermittent light (ImL). Chlorina f2, grown under normal light, lacked Lhcb1 (type I LHC II) and Lhcb6 (CP24) and had reduced amounts of Lhcb2, Lhcb3 (types II and III LHC II), and Lhcb4 (CP 29). Chlorina f2 grown under ImL lacked all LHC proteins, whereas wild-type ImL plants contained Lhcb5 (CP 26) and a small amount of Lhcb2. The chlorina f2 ImL thylakoids were organized in large parallel arrays, but wild-type ImL thylakoids had appressed regions, indicating a possible role for Lhcb5 in grana stacking. Chlorina f2 grown under ImL contained considerable amounts of violaxanthin (2-3/reaction center), representing a pool of phototransformable xanthophyll cycle pigments not associated with LHC proteins. Chlorina f2 and the plants grown under ImL also contained early light-induced proteins (ELIPs) as monitored by western blotting. The levels of both ELIPs and xanthophyll cycle pigments increased during a 1 h of high light treatment, without accumulation of LHC proteins. These data are consistent with the hypothesis that ELIPs are pigment-binding proteins, and we suggest that ELIPs bind photoconvertible xanthophylls and replace "normal" LHC proteins under conditions of light stress.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamska I., Ohad I., Kloppstech K. Synthesis of the early light-inducible protein is controlled by blue light and related to light stress. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2610–2613. doi: 10.1073/pnas.89.7.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartels D., Hanke C., Schneider K., Michel D., Salamini F. A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J. 1992 Aug;11(8):2771–2778. doi: 10.1002/j.1460-2075.1992.tb05344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassi R., Pineau B., Dainese P., Marquardt J. Carotenoid-binding proteins of photosystem II. Eur J Biochem. 1993 Mar 1;212(2):297–303. doi: 10.1111/j.1432-1033.1993.tb17662.x. [DOI] [PubMed] [Google Scholar]
  4. Funk C., Schröder W. P., Green B. R., Renger G., Andersson B. The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II. FEBS Lett. 1994 Apr 11;342(3):261–266. doi: 10.1016/0014-5793(94)80513-x. [DOI] [PubMed] [Google Scholar]
  5. Grimm B., Kruse E., Kloppstech K. Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol. 1989 Nov;13(5):583–593. doi: 10.1007/BF00027318. [DOI] [PubMed] [Google Scholar]
  6. Horton P., Ruban A. V., Rees D., Pascal A. A., Noctor G., Young A. J. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett. 1991 Nov 4;292(1-2):1–4. doi: 10.1016/0014-5793(91)80819-o. [DOI] [PubMed] [Google Scholar]
  7. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  8. Knoetzel J., Svendsen I., Simpson D. J. Identification of the photosystem I antenna polypeptides in barley. Isolation of three pigment-binding antenna complexes. Eur J Biochem. 1992 May 15;206(1):209–215. doi: 10.1111/j.1432-1033.1992.tb16918.x. [DOI] [PubMed] [Google Scholar]
  9. Levy H., Tal T., Shaish A., Zamir A. Cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin binding protein. J Biol Chem. 1993 Oct 5;268(28):20892–20896. [PubMed] [Google Scholar]
  10. Ljungberg U., Akerlund H. E., Andersson B. Isolation and characterization of the 10-kDa and 22-kDa polypeptides of higher plant photosystem 2. Eur J Biochem. 1986 Aug 1;158(3):477–482. doi: 10.1111/j.1432-1033.1986.tb09779.x. [DOI] [PubMed] [Google Scholar]
  11. Mullet J. E., Klein P. G., Klein R. R. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4038–4042. doi: 10.1073/pnas.87.11.4038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murray D. L., Kohorn B. D. Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Mol Biol. 1991 Jan;16(1):71–79. doi: 10.1007/BF00017918. [DOI] [PubMed] [Google Scholar]
  13. Peter G. F., Thornber J. P. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem. 1991 Sep 5;266(25):16745–16754. [PubMed] [Google Scholar]
  14. Ruban A. V., Young A. J., Pascal A. A., Horton P. The Effects of Illumination on the Xanthophyll Composition of the Photosystem II Light-Harvesting Complexes of Spinach Thylakoid Membranes. Plant Physiol. 1994 Jan;104(1):227–234. doi: 10.1104/pp.104.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sigrist M., Staehelin L. A. Appearance of type 1, 2, and 3 light-harvesting complex II and light-harvesting complex I proteins during light-induced greening of barley (Hordeum vulgare) etioplasts. Plant Physiol. 1994 Jan;104(1):135–145. doi: 10.1104/pp.104.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sigrist M., Staehelin L. A. Identification of type 1 and type 2 light-harvesting chlorophyll a/b-binding proteins using monospecific antibodies. Biochim Biophys Acta. 1992 Jan 16;1098(2):191–200. doi: 10.1016/s0005-2728(05)80336-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES