Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 May;108(1):387–392. doi: 10.1104/pp.108.1.387

Plasma membrane intrinsic proteins of Beta vulgaris L.

X Qi 1, C Y Tai 1, B P Wasserman 1
PMCID: PMC157345  PMID: 7784509

Abstract

The plasma membrane (PM) of higher plants contains numerous proteins; however, due to their low abundance, only a few have been identified and characterized by direct biochemical approaches. The major intrinsic protein (MIP) family is a class of highly hydrophobic integral membrane proteins thought to function as channels that facilitate the passage of water, small solutes, and possibly other moieties through the membrane. A family of PM intrinsic proteins was purified and characterized from PM vesicles derived from storage tissue of Beta vulgaris L. using the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate. This PM intrinsic protein-enriched fraction also contains high levels of UDP-glucose:(1,3)-beta-glucan (callose) synthase activity. Dithiothreitol is required to visualize the monomeric species of these highly hydrophobic integral membrane proteins. Sequence analysis of tryptic fragments derived from polypeptides of 31 and 27 kD revealed significant homologies to plant MIPs identified from cloned sequences. These MIPs include clone 7a from pea and RD28 from Arabidopsis, both of which are water-stress proteins, a tomato ripening-associated membrane protein, and PIP 2b, a PM-bound water channel protein from Arabidopsis. MIPs, therefore, represent abundantly occurring components of PMs derived from beet storage tissue.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chrispeels M. J., Maurel C. Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol. 1994 May;105(1):9–13. doi: 10.1104/pp.105.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Corpas F. J., Bunkelmann J., Trelease R. N. Identification and immunochemical characterization of a family of peroxisome membrane proteins (PMPs) in oilseed glyoxysomes. Eur J Cell Biol. 1994 Dec;65(2):280–290. [PubMed] [Google Scholar]
  3. Daniels M. J., Mirkov T. E., Chrispeels M. J. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol. 1994 Dec;106(4):1325–1333. doi: 10.1104/pp.106.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guerrero F. D., Jones J. T., Mullet J. E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol. 1990 Jul;15(1):11–26. doi: 10.1007/BF00017720. [DOI] [PubMed] [Google Scholar]
  5. Höfte H., Hubbard L., Reizer J., Ludevid D., Herman E. M., Chrispeels M. J. Vegetative and Seed-Specific Forms of Tonoplast Intrinsic Protein in the Vacuolar Membrane of Arabidopsis thaliana. Plant Physiol. 1992 Jun;99(2):561–570. doi: 10.1104/pp.99.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ishibashi K., Sasaki S., Fushimi K., Uchida S., Kuwahara M., Saito H., Furukawa T., Nakajima K., Yamaguchi Y., Gojobori T. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6269–6273. doi: 10.1073/pnas.91.14.6269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacob S. R., Northcote D. H. In vitro glucan synthesis by membranes of celery petioles: the role of the membrane in determining the type of linkage formed. J Cell Sci Suppl. 1985;2:1–11. doi: 10.1242/jcs.1985.supplement_2.1. [DOI] [PubMed] [Google Scholar]
  8. Jiang L. W., Bunkelmann J., Towill L., Kleff S., Trelease R. N. Identification of Peroxisome Membrane Proteins (PMPs) in Sunflower (Helianthus annuus L.) Cotyledons and Influence of Light on the PMP Developmental Pattern. Plant Physiol. 1994 Sep;106(1):293–302. doi: 10.1104/pp.106.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson K. D., Herman E. M., Chrispeels M. J. An abundant, highly conserved tonoplast protein in seeds. Plant Physiol. 1989 Nov;91(3):1006–1013. doi: 10.1104/pp.91.3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knepper M. A. The aquaporin family of molecular water channels. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6255–6258. doi: 10.1073/pnas.91.14.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Ludevid D., Höfte H., Himelblau E., Chrispeels M. J. The Expression Pattern of the Tonoplast Intrinsic Protein gamma-TIP in Arabidopsis thaliana Is Correlated with Cell Enlargement. Plant Physiol. 1992 Dec;100(4):1633–1639. doi: 10.1104/pp.100.4.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maeshima M. Characterization of the major integral protein of vacuolar membrane. Plant Physiol. 1992 Apr;98(4):1248–1254. doi: 10.1104/pp.98.4.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maurel C., Reizer J., Schroeder J. I., Chrispeels M. J., Saier M. H., Jr Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes. J Biol Chem. 1994 Apr 22;269(16):11869–11872. [PubMed] [Google Scholar]
  15. Mueller S. C., Brown R. M., Jr Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol. 1980 Feb;84(2):315–326. doi: 10.1083/jcb.84.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pao G. M., Wu L. F., Johnson K. D., Höfte H., Chrispeels M. J., Sweet G., Sandal N. N., Saier M. H., Jr Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol. 1991 Jan;5(1):33–37. doi: 10.1111/j.1365-2958.1991.tb01823.x. [DOI] [PubMed] [Google Scholar]
  17. Porzio M. A., Pearson A. M. Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochim Biophys Acta. 1977 Jan 25;490(1):27–34. doi: 10.1016/0005-2795(77)90102-7. [DOI] [PubMed] [Google Scholar]
  18. Read S. M., Northcote D. H. Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur J Biochem. 1983 Aug 15;134(3):561–569. doi: 10.1111/j.1432-1033.1983.tb07603.x. [DOI] [PubMed] [Google Scholar]
  19. Sloan M. E., Rodis P., Wasserman B. P. CHAPS Solubilization and Functional Reconstitution of beta-Glucan Synthase from Red Beet Root (Beta vulgaris L.) Storage Tissue. Plant Physiol. 1987 Oct;85(2):516–522. doi: 10.1104/pp.85.2.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weaver C. D., Roberts D. M. Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry. 1992 Sep 22;31(37):8954–8959. doi: 10.1021/bi00152a035. [DOI] [PubMed] [Google Scholar]
  23. Weaver C. D., Shomer N. H., Louis C. F., Roberts D. M. Nodulin 26, a nodule-specific symbiosome membrane protein from soybean, is an ion channel. J Biol Chem. 1994 Jul 8;269(27):17858–17862. [PubMed] [Google Scholar]
  24. Wu A., Harriman R. W., Frost D. J., Read S. M., Wasserman B. P. Rapid Enrichment of CHAPS-Solubilized UDP-Glucose: (1,3)-beta-Glucan (Callose) Synthase from Beta vulgaris L. by Product Entrapment : Entrapment Mechanisms and Polypeptide Characterization. Plant Physiol. 1991 Oct;97(2):684–692. doi: 10.1104/pp.97.2.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wu A., Wasserman B. P. Limited proteolysis of (1,3)-beta-glucan (callose) synthase from Beta vulgaris L: topology of protease-sensitive sites and polypeptide identification using Pronase E. Plant J. 1993 Oct;4(4):683–695. doi: 10.1046/j.1365-313x.1993.04040683.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES