Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jun;108(2):589–595. doi: 10.1104/pp.108.2.589

Nucleotide Levels Do Not Critically Determine Survival of Maize Root Tips Acclimated to a Low-Oxygen Environment.

J H Xia 1, P Saglio 1, JKM Roberts 1
PMCID: PMC157378  PMID: 12228496

Abstract

We tested the hypothesis that ATP levels and energy charge determine the resistance of maize (Zea mays) root tips to anoxia. We focused on root tips of whole maize seedlings that had been acclimated to low O2 by exposure to an atmosphere of 3% (v/v) O2 in N2. Acclimated anoxic root tips characteristically have higher ATP levels and energy charge and survive longer under anoxia than nonacclimated tips. We poisoned intact, acclimated root tips with either fluoride or mannose, causing decreases in ATP and energy charge to values similar to or, in most cases, below those found in nonacclimated anoxic tips. With the exception of the highest fluoride concentration used, the poisoned, acclimated tips remained much more tolerant of anoxia than nonacclimated root tips. We conclude that high ATP and energy charge are not components critical for the survival of acclimated root tips during anoxia. The reduced nucleotide status in poisoned, acclimated root tips had little effect on cytoplasmic pH regulation during anoxia. This result indicates that in anoxic, acclimated root tips either cytoplasmic pH regulation is not dominated by ATP-dependent processes or these processes can continue in vivo largely independently of any changes in ATP levels in the physiological range. The role of glycolytic flux in survival under anoxia is discussed.

Full Text

The Full Text of this article is available as a PDF (698.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gout E., Bligny R., Douce R. Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. J Biol Chem. 1992 Jul 15;267(20):13903–13909. [PubMed] [Google Scholar]
  2. Hole D. J., Cobb B. G., Hole P. S., Drew M. C. Enhancement of Anaerobic Respiration in Root Tips of Zea mays following Low-Oxygen (Hypoxic) Acclimation. Plant Physiol. 1992 May;99(1):213–218. doi: 10.1104/pp.99.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kennedy R. A., Rumpho M. E., Fox T. C. Anaerobic metabolism in plants. Plant Physiol. 1992 Sep;100(1):1–6. doi: 10.1104/pp.100.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mathieu Y., Guern J., Pean M., Pasquier C., Beloeil J. C., Lallemand J. Y. Cytoplasmic pH Regulation in Acer pseudoplatanus Cells: II. Possible Mechanisms Involved in pH Regulation during Acid-Load. Plant Physiol. 1986 Nov;82(3):846–852. doi: 10.1104/pp.82.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mertens E., Larondelle Y., Hers H. G. Induction of pyrophosphate:fructose 6-phosphate 1-phosphotransferase by anoxia in rice seedlings. Plant Physiol. 1990 Jun;93(2):584–587. doi: 10.1104/pp.93.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rivoal J., Hanson A. D. Evidence for a Large and Sustained Glycolytic Flux to Lactate in Anoxic Roots of Some Members of the Halophytic Genus Limonium. Plant Physiol. 1993 Feb;101(2):553–560. doi: 10.1104/pp.101.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Roberts J. K., Callis J., Jardetzky O., Walbot V., Freeling M. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6029–6033. doi: 10.1073/pnas.81.19.6029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Roberts J. K., Chang K., Webster C., Callis J., Walbot V. Dependence of Ethanolic Fermentation, Cytoplasmic pH Regulation, and Viability on the Activity of Alcohol Dehydrogenase in Hypoxic Maize Root Tips. Plant Physiol. 1989 Apr;89(4):1275–1278. doi: 10.1104/pp.89.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Roberts J. K. Observation of uridine triphosphate:glucose-1-phosphate uridylyltransferase activity in maize root tips by saturation transfer 31P-NMR. Estimation of cytoplasmic PP. Biochim Biophys Acta. 1990 Jan 23;1051(1):29–36. doi: 10.1016/0167-4889(90)90170-i. [DOI] [PubMed] [Google Scholar]
  10. Roberts J. K., Testa M. P. P-NMR Spectroscopy of Roots of Intact Corn Seedlings. Plant Physiol. 1988 Apr;86(4):1127–1130. doi: 10.1104/pp.86.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saglio P. H., Pradet A. Soluble Sugars, Respiration, and Energy Charge during Aging of Excised Maize Root Tips. Plant Physiol. 1980 Sep;66(3):516–519. doi: 10.1104/pp.66.3.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saglio P. H., Raymond P., Pradet A. Metabolic Activity and Energy Charge of Excised Maize Root Tips under Anoxia: CONTROL BY SOLUBLE SUGARS. Plant Physiol. 1980 Dec;66(6):1053–1057. doi: 10.1104/pp.66.6.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saglio P. H., Raymond P., Pradet A. Oxygen Transport and Root Respiration of Maize Seedlings: A Quantitative Approach Using the Correlation between ATP/ADP and the Respiration Rate Controlled by Oxygen Tension. Plant Physiol. 1983 Aug;72(4):1035–1039. doi: 10.1104/pp.72.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saint-Ges V., Roby C., Bligny R., Pradet A., Douce R. Kinetic studies of the variations of cytoplasmic pH, nucleotide triphosphates (31P-NMR) and lactate during normoxic and anoxic transitions in maize root tips. Eur J Biochem. 1991 Sep 1;200(2):477–482. doi: 10.1111/j.1432-1033.1991.tb16207.x. [DOI] [PubMed] [Google Scholar]
  15. Talbott L. D., Ray P. M., Roberts J. K. Effect of Indoleacetic Acid- and Fusicoccin-Stimulated Proton Extrusion on Internal pH of Pea Internode Cells. Plant Physiol. 1988 May;87(1):211–216. doi: 10.1104/pp.87.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Xia J. H., Roberts JKM. Improved Cytoplasmic pH Regulation, Increased Lactate Efflux, and Reduced Cytoplasmic Lactate Levels Are Biochemical Traits Expressed in Root Tips of Whole Maize Seedlings Acclimated to a Low-Oxygen Environment. Plant Physiol. 1994 Jun;105(2):651–657. doi: 10.1104/pp.105.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Xia J. H., Saglio P. H. Lactic Acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia. Plant Physiol. 1992 Sep;100(1):40–46. doi: 10.1104/pp.100.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES