Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Sep;109(1):203–212. doi: 10.1104/pp.109.1.203

Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone.

P L Conklin 1, R L Last 1
PMCID: PMC157577  PMID: 7480322

Abstract

Antioxidant isoenzymes function to eliminate free radicals and are localized to several different subcellular compartments within the plant cell. In Arabidopsis thaliana exposed to ozone (O3), we have monitored the accumulation of mRNAs encoding both cytosolic and chloroplastic antioxidant isoenzymes. Two different O3 exposure protocols yielded similar results. Upon O3 exposure, the steady-state levels of three mRNAs encoding cytosolic antioxidant isoenzymes (ascorbate peroxidase, copper/zinc superoxide dismutase, and glutathione S-transferase) increase. The glutathione S-transferase mRNA responds very quickly to the oxidative stress (2-fold increase in 30 min) and is elevated to very high levels, especially in plants grown with a 16-h photoperiod. In contrast, O3 exposure causes a decline in the levels of two chloroplastic antioxidant mRNAs (iron superoxide dismutase and glutathione reductase) and two photosynthetic protein mRNAs (chlorophyll a/b-binding protein and ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit). We show that this decline does not include all mRNAs encoding chloroplast-targeted proteins, since O3 causes an elevation of mRNA encoding the chloroplast-localized tryptophan biosynthetic enzyme phosphoribosylanthranilate transferase. Two alternative hypotheses that could explain this differential mRNA accumulation in response to O3 are discussed.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casano L. M., Martin M., Sabater B. Sensitivity of Superoxide Dismutase Transcript Levels and Activities to Oxidative Stress Is Lower in Mature-Senescent Than in Young Barley Leaves. Plant Physiol. 1994 Nov;106(3):1033–1039. doi: 10.1104/pp.106.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dann M. S., Pell E. J. Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foliage. Plant Physiol. 1989 Sep;91(1):427–432. doi: 10.1104/pp.91.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elledge S. J., Mulligan J. T., Ramer S. W., Spottswood M., Davis R. W. Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1731–1735. doi: 10.1073/pnas.88.5.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Floyd R. A., West M. S., Hogsett W. E., Tingey D. T. Increased 8-hydroxyguanine content of chloroplast DNA from ozone-treated plants. Plant Physiol. 1989 Oct;91(2):644–647. doi: 10.1104/pp.91.2.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hindges R., Slusarenko A. cDNA and derived amino acid sequence of a cytosolic Cu,Zn superoxide dismutase from Arabidopsis thaliana (L.) Heyhn. Plant Mol Biol. 1992 Jan;18(1):123–125. doi: 10.1007/BF00018463. [DOI] [PubMed] [Google Scholar]
  7. Hérouart D., Van Montagu M., Inzé D. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3108–3112. doi: 10.1073/pnas.90.7.3108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krupa S. V., Manning W. J. Atmospheric ozone: formation and effects on vegetation. Environ Pollut. 1988;50(1-2):101–137. doi: 10.1016/0269-7491(88)90187-x. [DOI] [PubMed] [Google Scholar]
  9. Kubo A., Saji H., Tanaka K., Tanaka K., Kondo N. Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Mol Biol. 1992 Feb;18(4):691–701. doi: 10.1007/BF00020011. [DOI] [PubMed] [Google Scholar]
  10. Leutwiler L. S., Meyerowitz E. M., Tobin E. M. Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana. Nucleic Acids Res. 1986 May 27;14(10):4051–4064. doi: 10.1093/nar/14.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  12. Mittler R., Zilinskas B. A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 1994 Mar;5(3):397–405. doi: 10.1111/j.1365-313x.1994.00397.x. [DOI] [PubMed] [Google Scholar]
  13. Mustafa M. G. Biochemical basis of ozone toxicity. Free Radic Biol Med. 1990;9(3):245–265. doi: 10.1016/0891-5849(90)90035-h. [DOI] [PubMed] [Google Scholar]
  14. Niyogi K. K., Fink G. R. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway. Plant Cell. 1992 Jun;4(6):721–733. doi: 10.1105/tpc.4.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reich P. B., Amundson R. G. Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science. 1985 Nov 1;230(4725):566–570. doi: 10.1126/science.230.4725.566. [DOI] [PubMed] [Google Scholar]
  16. Reinbothe S., Mollenhauer B., Reinbothe C. JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell. 1994 Sep;6(9):1197–1209. doi: 10.1105/tpc.6.9.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rose A. B., Casselman A. L., Last R. L. A Phosphoribosylanthranilate Transferase Gene Is Defective in Blue Fluorescent Arabidopsis thaliana Tryptophan Mutants. Plant Physiol. 1992 Oct;100(2):582–592. doi: 10.1104/pp.100.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sharma Y. K., Davis K. R. Ozone-Induced Expression of Stress-Related Genes in Arabidopsis thaliana. Plant Physiol. 1994 Aug;105(4):1089–1096. doi: 10.1104/pp.105.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tsang E. W., Bowler C., Hérouart D., Van Camp W., Villarroel R., Genetello C., Van Montagu M., Inzé D. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell. 1991 Aug;3(8):783–792. doi: 10.1105/tpc.3.8.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Van Camp W., Bowler C., Villarroel R., Tsang E. W., Van Montagu M., Inzé D. Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9903–9907. doi: 10.1073/pnas.87.24.9903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Willekens H., Van Camp W., Van Montagu M., Inze D., Langebartels C., Sandermann H., Jr Ozone, Sulfur Dioxide, and Ultraviolet B Have Similar Effects on mRNA Accumulation of Antioxidant Genes in Nicotiana plumbaginifolia L. Plant Physiol. 1994 Nov;106(3):1007–1014. doi: 10.1104/pp.106.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES